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Abstract

Privacy is gaining more and more attention due to users awareness of their personal informa-
tion being compromised. One method of ensuring privacy is to use secure function evaluation,
which allows two or more distrusting parties to jointly evaluate a function without sharing
their inputs and learn nothing more than the result.

In this thesis, we design and implement a framework for privacy-preserving assignments.
We solve the assignment problem in O(n4) running time. Our system takes the preference
list of the users as inputs and uses RSA encryption along with secret sharing to protect the
input of the user so that no party can learn about the preference of the user from their
share. CBMC - GC [HFKV12] and ABY [DSZ15] are then used to create and evaluate Boolean
circuits using Yao’s GC [Yao86] and the GMW protocol [GMW87], and after the evaluation,
the results are then sent to the users. Our implementation of the Hungarian algorithm for
Boolean circuits has been tested for up to 13 participants. It can support a large number
of participants and can be used to generate large circuits for secure computation. We then
benchmark our implementation performance and conclude that the runtime and number of
AND gates increase with the increasing circuit size because more data needs to be transferred.
Increase in circuit size means that the number of the participants have increased which means
that the new circuit needs more gates to hold these values.
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1 Introduction

Privacy has become an important concern with increasing amount of data. In online trans-
actions, where a transfer of personal user data is required, ensuring privacy is not always
straight forward. Additionally, with an increasing number of mobile devices like smart
watches, assistants, and home automation units, the users are losing control over their per-
sonal information submitting personal data knowingly or unknowingly. The information
may be sold to third parties or shared with other partner companies. For e.g., in a recent
scandal which involved a breach of personal information without authorization, a company
named Cambridge Analytica harvested the profiles of more than 50 million users by exploiting
Facebook. They collected the data using an app on Facebook which could access the data
of user’s friends without their consent and later used the data for targeting the individual
users with personalized political advertisements for US presidential elections in 2016 [CG18].
This has caused users to move to platforms they think are secure and do not breach their
privacy. Most online platforms rely on trusted third party providers for the processing of their
data.

Secure computation has become an important solution in such scenarios where the users do not
feel secure about sharing their private data but want to perform a particular computation. The
idea of secure computation was first introduced by Andrew Yao [Yao86] which is commonly
known as Yao’s millionaire’s problem. In this problem, two millionaires want to know who is
wealthier without revealing their actual wealth. They want to do it without the involvement
of any third party. The solution he provided for the problem formed the basis for secure-two
party computation which is further discussed in Section 2.4. Since Yao’s seminal work there
has been a lot of research on secure multi-party protocols. However, practical implementation
had not appeared until recently.

Since privacy is the right of every user, it is essential for almost every problem concerning the
personal data of the user. Some examples include processing of employees data, processing
of customer data, and data in banks. One such example can be the assignment problem.
Consider two sets A and B, set A contains a list of students and set B contains a list of
dormitories, all elements in set A needs to be assigned to all elements in the set B concerning
their preference. Since preference is personal, the user might not feel comfortable disclosing
it to others. Also, the confidentiality of the data should not be breached which might result in
the outcome being influenced. In the course of this thesis, we focus on solving the assignment
problem in a privacy-preserving manner.

We use ABY [DSZ15] along with CBMC - GC [HFKV12] to manage the secure computation
protocol which ensures security with correctness. We use state of the art tools to achieve
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1 Introduction

this goal. The data is collected, processed, used and destroyed after we are done with the
computation.

1.1 Motivation

Achieving data privacy is still considered to be a challenging problem because of the increasing
use of smart devices. Companies hire third-parties to process sensitive information which in
principle is also a breach of privacy because the information is mostly available in the clear
and can be manipulated. To protect the data of the user many cryptographic techniques can
be used. The companies may also use the data for research purposes. Often a user wants to be
part of a system as an anonymous or private participant without revealing too much personal
information. This can be made possible by using proper tools and processes that protect the
privacy of the user and also practices like deleting the data of the user once it is processed. The
user should have the right to get his data deleted whenever he wants.

Assignment problems, such as vendors bidding for projects, requires processing and storing
sensitive information to award projects to the best candidates. A huge amount of money is
involved in such cases, and a high level of trust factor is required for the processing of such
information. This thesis focuses on solving the assignment problem in a privacy-preserving
manner by utilizing secure computation techniques.

Assignment problems are widely used for different tasks, and one such example of what we
focus on in this thesis is a student-topic assignment. Consider a case where some students
register for a seminar course and can get a topic to work on. The students have priorities for
the offered topics and would like to have the topic that interests them the most. The user
does not want its preference to be shared or the results to be influenced in any way and a fair
assignment to take place. We build such a system that would help the students get a topic of
their choice while keeping their preference private.

1.2 Contributions

We design and implement a framework for privacy-preserving assignments. We utilize the
frameworks from [HFKV12] and [DSZ15] to compute the assignments securely. We optimized
the assignment algorithm for bounds and memory usage to reduce the computation and
communication cost by using the smallest possible data structures for our data which helped
in reducing the number of gates in the Boolean circuit. Also, for all loops, we specified the
bounds inside the program which are based on the size of the participants which helps us in
generating the Boolean circuit in CBMC - GC without the need for the framework to calculate
them.

2



1 Introduction

1.3 Outline

This thesis is divided into 7 Chapters. In Chapter 2, we define the necessary notations and
the theoretical background required for this thesis. This chapter contains the introduction to
logic gates, Boolean circuits, secure computation protocols and the two frameworks used by
us CBMC - GC and ABY. In Chapter 3, we discuss the secure matching problems which are
related to our work, for e.g., secure stable matching. In Chapter 4, we describe the design of
our framework which includes details of our three modules and the Hungarian Algorithm.
Chapter 5 contains the implementation details of our framework. In this chapter we explain
our implementation choices and the technologies that we have used to achieve the system.
In Chapter 6 we discuss the results. Chapter 7 concludes the thesis and gives the direction of
the future work.

3



2 Preliminaries

In this chapter, we introduce the fundamental concepts and notations which are used later
in the thesis and are required to understand the topic. We start by describing logic gates
(Section 2.1) and operations and move on to explain Boolean circuits (Section 2.2) and
related concepts which are the building blocks of this thesis. We then describe the Boolean
circuit-based protocols for secure function evaluation which are Yao’s Garbled Circuit Protocol
(Section 2.4) and the GMW protocol (Section 2.5). They use Oblivious Transfer (Section 2.3)
and Multiplication Triples (Section 2.5.1) which we further explain in this chapter. In Sec-
tion 2.7, we introduce the ABY framework which is used for secure two party computation. In
Section 2.6, we introduce different compilers which have been developed for Secure Two-Party
computation (STC). The CBMC-GC framework [HFKV12] is discussed in detail, the whole con-
struction and process. Its optimizations are then discussed which are mostly aiming to reduce
size and depth. We then present a comparison of all of these compilers.

2.1 Logic Gates and Operations

Logic gates are the building blocks of a digital circuit. Most of the logical operations can
have two or more inputs except for the NOT operation which takes only a single input. In
this context, 0 denotes false, and 1 denotes true. Some of the basic logic gates include
AN D, OR, NOT, XOR, NAN D, NOR, X NOR.

2.2 Boolean Circuit

Boolean Circuits can be defined as the standard representation of Boolean functions that are
commonly used in multiple applications, e.g., digital electronics and secure computation. We
denote the number of inputs by n, the number of outputs by m and the number of gates by g.
Figure 1 shows an example where n= 3, m= 1 and g = 4.

4



2 Preliminaries

Figure 2.1: A Boolean Circuit with 3 inputs, 4 gates and 1 output

According to Arora and Barak [AB09], a Boolean circuit with n inputs, m outputs, and g
gates is a Directed Acyclic Graph with n input nodes with no incoming edges and m output
nodes with no outgoing edges. The edges are called wires, and all other nodes are called
gates which are labeled with one of the logical operations, e.g., AND, OR or NOT. The size of
the boolean circuit is measured by the number of nodes in it, and the depth of the circuit can
be measured by the maximum distance from an input to an output.

2.2.1 Functional Completeness

A set of Boolean functions is called functionally complete if all other Boolean functions can
be constructed from this set. For instance, 2-input, 1-output functionally complete set is
{AN D, XOR} which is also the common basis for secure computation. This means, e.g., that
we can create any circuit out of only AND and XOR gates.

2.2.2 Topological Order

The topological order of a Boolean circuit is ordering of its gates G1, . . . , Gn which satisfies
the property that no gate Gi has inputs that are outputs of a successive gate G j>i . As long as
all the current gate’s inputs are known, the gates of a Boolean circuit can be evaluated. To
ensure this property, the gates are sorted and evaluated in topological order for which, e.g.,
specific graph traversal algorithms can be utilized [Sch12].

2.3 Oblivious Transfer

Oblivious Transfer (OT) is a protocol which allows two parties a sender and a receiver
- to transfer information. A sender sends m pieces of information of which the receiver

5



2 Preliminaries

receives one piece of the information according to his choice. The sender remains obliv-
ious to the information transferred while the receiver would only know about the piece
received.

Suppose Alice wants to give discount vouchers with every product purchased online. Every
time Bob purchases a product, they run an oblivious transfer protocol with Alice’s input being
x1, . . . , xn (where x i is a valid pair of the message and signature) one of which is chosen at
random by Bob, and in the end, Bob has a valid voucher without Alice knowing the exact
one which would ensure Bob’s privacy as he does not want Alice to know where is he exactly
spending them. In this way, Bob can never guess the other vouchers causing any harm to
Alice’s business.

The concept was first introduced by Rabin in 1981 [Rab05]. To build protocols for secure
multi-party computation a more useful form of OT was developed by Even, Goldreich, and
Lempel [EGL85]. In a 1-out-of-2 OT protocol, the sender has two messages mi , i ∈ {0,1},
and the receiver can choose one out of them by providing a bit i. In this way, the receiver
only learns about the received message, and the sender remains oblivious to the message
transferred. The protocol was later generalized to 1-out-of-n oblivious transfer with n input
values and one selection value instead of bit. OT is extensively used for secure computing
protocols.

Oblivious transfer protocols traditionally require expensive public-key operations. To over-
come this, [IKNP03] proposed OT extensions which are secure against semi-honest adversaries.
They start by creating a small number of OTs (base OTs) using public-key cryptography and
extend them by creating any polynomial number of OTs based on symmetric key cryptogra-
phy.

2.4 Yao’s Garbled Circuit Protocol

Yao’s Garbled Circuit Protocol [Yao86] allows two mistrusting parties without the presence
of a trusted third party to evaluate a function over their private inputs securely. Yao’s GC
protocol is secure against semi-honest adversaries but has extensions to malicious security
[ALSZ15].

2.4.1 Garbled Circuit

A garbled circuit is a cryptographic protocol which supports secure computing. The process of
garbling the gate as illustrated in Figure 2.2 and shown in Table 2.1, the inputs, and outputs
of the gates are replaced by keys, and the mapping is kept a secret so that even knowing the
output of a gate does not give any information about its true value.

6



2 Preliminaries

kA

kB

kA∧B

Figure 2.2: Garbled AND gate with two inputs and one output whose table is Table 2.1.

AND
A B A∧ B GCT
k0

A k0
B k0

A∧B Ek0
A(Ek0

B(k0
A∧B))

k0
A k1

B k0
A∧B Ek0

A(Ek1
B(k0

A∧B))
k1

A k0
B k0

A∧B Ek1
A(Ek1

B(k0
A∧B))

k1
A k1

B k1
A∧B Ek1

A(Ek1
B(k1

A∧B))

Table 2.1: Truth table for two-input Garbled AND operation.

A garbling scheme consists of three operations, i.e., garble, encode and evaluate. Garbling is
a way to convert a plain circuit C into an encoded circuit Ĉ . In the encoding operation, the
plain input x is converted into a garbled input x̂ by using the secret randomness that was
used to garble the circuit and is transferred to the other party using oblivious transfer. In the
evaluation mode, the circuit Ĉ and input x̂ are taken to compute the output of the circuit
C(x) obliviously. This is done by going through all the gates and decrypting the rows in the
garbled tables until the output labels are obtained [BHR12].

2.4.2 Classic Protocol

Alice has private input a and Bob has private input b, and they both agree on some function
f . They both want to learn f (a, b) but do not want the other one to learn anything more
than that.

The parties express function f as a circuit. Alice (garbler) then garbles the circuit C f to
Ĉ f and sends Ĉ f along with her garbled input â to Bob. Bob now has his private input b,
but only Alice knows how to encode any input for C f into a garbled input. The parties use
Oblivious Transfer (Section 2.3) for Bob to learn the garbled version b̂ without Alice learning
about b. Since Bob has the garbled circuit Ĉ f and the garbled inputs â, b̂, now he can run
the evaluation process and learn the garbled output of the circuit. Since both of them need
to learn f (a, b) so, Alice will send the mapping of garbled output to real values to Bob, and
then he can reveal it to Alice. The protocol also works if only one party wants to learn the
output of the function.

7



2 Preliminaries

technique
size per gate

calls to A ∥ B per gate
generator evaluator

XOR AND XOR AND XOR AND
classic [Yao86] 4 4 4 4 4 4
point-and-permute [BMR90] 4 4 4 4 1 1
free XOR [KS08] 0 4 0 4 0 1
GRR3 + free XOR [NPS99] 0 3 0 4 0 1
half gates [ZRE15] 0 2 0 4 0 2

Table 2.2: Optimization to Yao’s Garbled Circuits [ZRE15]

2.4.3 Optimizations

Yao’s garbled circuit protocol is one of the most efficient approaches for secure two-party
computation (STC) until today, and several optimizations for the protocol have been intro-
duced over time. Yakoubov [Yak17] has discussed in detail about the optimizations to Yao’s
GC. We summarize some relevant ones below.

2.4.3.1 Point and Permute

In the point-and-permute technique introduced by Beaver, Micali and Rogaway [BMR90],
random permutation bits s0 and s1 are associated with each wire w. The permutation bits
can be safely revealed to the evaluator as they are independent of the wire label’s value.
The ciphertext of the garbled gate is then ordered according to the permutation bits of the
input wires. The permutation bits can then be used to point to the evaluator which ciphertext
should he decrypt without revealing the wire label itself. This way, the evaluator has to
decrypt only one ciphertext per gate.

2.4.3.2 Garbled Row Reduction GRR3

Garbled row reduction allows one ciphertext to be eliminated which reduces the size of the
garbled tables from four rows to three rows as shown in the Table 2.2. This is achieved by
picking one label in such a way that we can eliminate one ciphertext per gate (AND/XOR).
Moreover, the technique is compatible with free XOR [Yak17].

2.4.3.3 Free XOR

In the classic and point-and-permute techniques, the computation and communication com-
plexity is the same for an AND gate as for an XOR gate. Kolesnikov and Schneider [KS08]
introduced a mechanism which allows XOR gates to be evaluated for free (i.e., without
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2 Preliminaries

communication cost or cryptographic operations). When three wires touching an XOR gate
have the same offset, then the XOR gate can be garbled for free, so they arrange these
three wires in the circuit to have the same offset. The wire labels are chosen of the form
(A, A⊕ R), where R is secret but common to all wires. An evaluator with one of (X , X ⊕ R)
and one of (Y, Y ⊕ R), can simply XOR the two wire labels to perform the XOR operation
resulting in Z or Z ⊕ R (where Z = X ⊕ Y ) which is the correct representation of the result
[ZRE15].

2.4.3.4 Half Gates

Zahur, Rosulek and Evans [ZRE15] introduced the idea of half gates where an AND gate
can be garbled with two ciphertexts, and an XOR gate can be evaluated for zero cipher-
text.

E.g., consider an AND gate with a, b as input wires and c as output wire. An AND gate is
broken into two half AND gates for which one party knows one input. This way only one
ciphertext is needed to garble one half-gate. First half-gate is when the garbler knows the
value of a. He further needs to have two ciphertexts. Second half-gate is when the evaluator
knows the value of a. He further needs to have two ciphertexts from the garbler. In any case,
the maximum number of ciphertexts needed to garble the circuit are two. A gate c = a ∧ b
for r ∈ {0,1} can be expressed as:

c = (a ∧ r)⊕ (a ∧ (b⊕ r)) (2.1)

In the first half gate (a ∧ r) a garbler knows r, and in the second half gate, (a ∧ (b⊕ r)) the
evaluator knows (b ⊕ r) from the point-and-permute random bit. Hence, every AND gate
needs two ciphertexts, and free-XOR also holds true.

2.5 GMW Protocol

The Goldreich, Micali and Wigderson protocol (GMW) is another protocol for secure Boolean
circuits evaluation which was introduced in 1987 [GMW87]. It is an alternative approach
to Yao’s Garbled Circuits which can be extended to multiple parties. The protocol is secure
against semi-honest adversaries. Assuming that the parties are honest but curious about
the information from another party. It only allows XOR and AND gates which do not pose
boundaries, because they are functionally complete (Section 2.2.1). Every input and output
is shared between the two parties in such a way that each party i ∈ {0,1} holds a seemingly
random share vi where v = v0 ⊕ v1.

9
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2.5.1 Multiplication Triples

A Multiplication Triple (MT) [Bea91] can be used as an alternative to OT for the evaluation
of AND gates in the GMW protocol. It is a triple of bits (a, b, c) which satisfies the equation
for two parties Pi with i ∈ {0,1} .

c1 ⊕ c2 = (a1 ⊕ a2)(b1 ⊕ b2). (2.2)

MTs can be securely generated by a trusted third party or by using 1-out-of-4 OT protocol
before the computation as they are independent of the input from parties. They are used to
mask the actual value, so it is necessary that each party only knows about its MT values. Each
MT can only be used once so for every AND gate a new MT is calculated.

2.5.2 The Protocol

The GMW protocol can be divided into two phases: the setup phase and the online phase.
In the setup phase, all operations that do not require an input value are performed while
the online phase needs input values. Most of the work is done in the setup phase which is
generating Multiplication Triples (MT) for each AND gate via OTs. In the online phase, input
sharing, function evaluation and output sharing between the parties takes place. The Boolean
circuit is evaluated gate wise in topological order, and the AND gates are evaluated using
MTs.

XOR gates with the output c can be evaluated as: c = c1 ⊕ c2 which is equivalent to (a1 ⊕ a2)
⊕ (b1 ⊕ b2) equals to (a1 ⊕ b1) ⊕ (a2 ⊕ b2). Therefore, each party Pi can compute its output
share locally without communication effort by ci = ai ⊕ bi .

AND gates can be evaluated using Multiplication Triples. Both parties generate a random MT
for each AND gate using OT operations which can be done in the offline phase. Each party Pi
has the values x i ,yi ,zi satisfying zi = x i ⊕ yi .

In the next step, the values are secretly shared between the parties. Both parties calculate
di = a1⊕ x1 and e = b1⊕ y1 and exchange the results which further allows them to compute
di = d0 ⊕ d1 and e = e0 ⊕ e1. After computing d and e they can calculate their part of the
result as :

c0 = (d ⊕ e)⊕ (y0 ⊕ d)⊕ (x0 ⊕ e)⊕ z0, (2.3)

c1 = (y1 ⊕ d)⊕ (x1 ⊕ e)⊕ z1. (2.4)

There have been continuous improvements in the GMW protocol. To accelerate the process,
OT execution and MT generation can be performed in parallel [CHK+12; SZ13]. Schneider
and Zohner [SZ13] have also discussed in detail some improvements like depth-optimized
circuit constructions for the GMW protocol.
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2.6 Compiling Boolean Circuits

The practical implementation of Secure Two-Party computation (STC) is facilitated by the
existing secure computation protocols. A program must be converted to a Boolean circuit
before it gets evaluated securely. Since such conversions are not straightforward, so in the past
hand-crafted Boolean circuits or domain-specific languages were used for STC. C Bounded
Model Checker for Garbled Circuits (CBMC-GC) is the first open-source ANSI C compiler for
STC.

2.6.1 Related Compilers

This section summarizes the discussion by Buescher et al. [BFH+17] on related work on
compilers for multi-party computation (MPC). Compilers for MPC can be classified into two
categories based on what purpose they serve: standard programming language or domain-
specific language (DSL). Standard programming languages are general purpose programming
languages that can be used broadly across application domains but do not contain features
for a specific domain, e.g., C, C++, and Java. Domain-specific languages are computer
languages which are designed to focus on a particular domain. They are written to deal
with a specific set of concerns, e.g., maven and make for describing software builds. There
are two different ways in which a DSL can be classified, internal or external. Internal
DSL can be called integrated compiler as it is integrated into an MPC framework while
external DSL is parsed independently of the MPC framework so it can be called independent
compiler.

2.6.1.1 Internal DSL

An intermediate representation is produced by the integrated compilers, which is only instan-
tiated by the circuit (interpreted) while an MPC protocol is being executed. These interpreted
circuit descriptions commonly allow the circuit to be represented compactly.

Some integrated compilers support the execution of mix-mode secure computation. Mix-
mode computation allows code to be written in such a way that it can differentiate between
public and private computation, which lets the mix-mode program to be expressed in a
single language but also tightens the coupling between the compiler and the execution
framework. Furthermore, some integrated compilers also support the compilation of pro-
grams for hybrid secure computation protocols, which combine different cryptographic
approaches.
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2.6.1.2 External DSL

The independent compilers, as its name would suggest, allow the circuit to be created
independently from the framework, it is being executed. The advantage of an independent
compiler is that the produced circuits can be optimized to their full extent during compile time
and thus prove to be more versatile in their use in MPC frameworks.

2.6.1.3 Compilers for MPC

In this section, some of the MPC Compilers are discussed and compared based on the discussion
in [BFH+17]. The KSS Compiler by Kreuter et al. [KSS12] uses gate-level optimization
methods, such as constant propagation and dead-gate elimination and is also the first compiler
that shows scalability up to a billion gates. KSS compiles a DSL into a flat circuit format.
The PCF compiler by Kreuter et al. [KSMB13] compiles C programs by using the portable
LCC compiler [FH95], which is an ANSI C compiler for various platforms, as a frontend. PCF
converts an intermediate bytecode representation of LCC into an interpreted circuit format.
PCF supports comparably limited optimization methods, that too can be applied only locally
to all functions, but it is still more scalable than CBMC-GC.

ObliVM by Liu et al. [LWN+15] allows the efficient development of oblivious algorithms
by compiling a DSL which supports the combination of oblivious data structures with
MPC. According to Beuscher et al. [BFH+17], ObliVM provides insufficient optimization
methods. Obliv-C by Zahur and Evans [ZE15] compiles a modified variant of C into an
executable application that supports oblivious data structures and mix-mode computa-
tions.

TinyGarble by Songhori et al. [SHS+15] compiles circuits from hardware description lan-
guages, e.g., VHDL, by using commercial hardware synthesis tools. This approach requires
the developer to be seasoned with hardware design but also enables the vast scope of existing
functionality in the hardware synthesis to be used. The Frigate compiler by Mood et al.
[MGC+16] also compiles DSL but the compilation is extensively tested and highly scalable.
Both TinyGarble and Frigate produce compact circuit descriptions that compress sequential
circuit structures.

2.6.2 CBMC-GC Framework

CBMC-GC [HFKV12] is a compiler based on a software verification tool CBMC [CKL04].
CBMC implements bit-precise bounded model checking for ANSI C. It translates an input C
program to a Boolean constraint which represents a program behavior. CBMC-GC adapts this
capability to provide circuits needed for STC. Figure 2.3 illustrates how CBMC-GC works
in the STC toolchain. CBMC-GC translates a C program to a Boolean circuit which is then
deployed by the two parties A and B using the STC platform. The two parties then use an
STC framework also explained in Section 2.4 to evaluate the circuit and obtain the results.

12
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In comparison with other state-of-the-art compilers, CBMC-GC compiles functionalities into
up to four times smaller circuits than other compilers using the same source code for the
function. Also, CBMC-GC requires a number k as an input to bound the size of the program.
This constraint allows CBMC-GC to be terminated in a finite number of steps. The circuit
compilation in CBMC-GC can be divided into five steps as shown in Figure 2.3 and are
discussed below. The first three steps are a part of the standard CBMC processing while
the other two are specific to STC tasks [FHK+14]. Now each step is described in detail
below.

Figure 2.3: Tool chain of CBMC-GC[BFH+17]

2.6.2.1 Intermediate Representation

In this step, the C program gets translated into an intermediate representation called GOTO
program. All non-linear control flows such as loops and jumps, switches and if statements
are translated to equivalent guarded goto statements. Guarded GOTO statements are branch
conditions which include (optional) conditions, and guarded GOTOs are the only control
instructions that remain in the GOTO program. One GOTO program for each function gets
generated [KT14].

2.6.2.2 Loop Unrolling

Loop unrolling, also know as loop unwinding is a loop transformation technique to optimize
the execution time of a program. To have a loop-free representation of the program, the
recursive function calls and loops are unrolled up to a specific depth. The loops are replaced
by a sequence of k nested if statements and the recursive function calls are expanded up to
k times which makes the program acyclic. This depth of k is automatically calculated by a
static analysis but can also be specified by the user in case it fails to calculate it automatically.
Static analysis is a method of gathering information about a program without executing it.
Listing 2.1 and Listing 2.2 show the code example of loop unrolling where a loop which is
expanded up to 3 times. The loop is simply calling an add function which adds the value of i
until the condition is met.

13



2 Preliminaries

1 i=0;
2 while(i!=3) {
3 func_add (i);
4 i++;
5 }

Listing 2.1: Before loop unrolling

1 i=0;
2 if (i!=3) {
3 func_add (i);
4 i++;
5 if (i!=3) {
6 func_add (i);
7 i++;
8 if (i!=3) {
9 func_add (i);

10 i++;
11 }
12 }
13 }

Listing 2.2: Loop-free representation of the program for 3 iterations of the loop

2.6.2.3 Single Static Assignment

Single Static Assignment (SSA) is a property of intermediate representation (Section 2.6.2.1)
which requires that every variable is defined before it is used, and each variable should be
assigned only once. The program can be converted to SSA form since it is acyclic. For e.g.,
x = x + 1 is replaced by x1 = x0 + 1, and further on, x1 is used where the incremented x
value is to be applied.

2.6.2.4 Circuit Instantiation

In this step, CBMC replaces the variables by bit vectors. For example, depending on the system
architecture, an integer would be converted to a bit vector of size 16 or 32. The operations
over variables are also translated to Boolean functions. CBMC-GC changes circuit generation
in some places to reflect actual computation because CBMC aims to produce reliable instances
for a SAT solver and has the freedom to generate circuits which are equisatisfiable with the
expected circuits of CBMC-GC but are logically inequivalent.
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2.6.2.5 Circuit Minimization for STC

This step aims to minimize the number of AND gates by using XOR gates in the resulting
circuit while keeping the circuit size small since the XOR gates can be evaluated for free
(Section 2.4.3.3). AND-INVERTER graphs (AIG) are directed acyclic graphs whose nodes
represent logical AND gates, and the edges represent wires between gates. Also, some of these
wires can negate the transmitted signal. Constant propagation is the process of substituting
values of a known constant in expressions during compile time. In CBMC-GC zeros and
ones are substituted while performing constant propagation. Circuit rewriting is a greedy
optimization algorithm used in logic synthesis [MCB06]. A type of circuit rewriting is pattern
based rewriting which allows reducing the number of non-linear gates by applying patterns
that favor linear gates. In circuit rewriting all gates are first ordered in topological order
(Section 2.2.2) by their circuit depth. Then the patterns are matched against all gates and
sub-circuits by iterating over the gates. The sub-circuit becomes a candidate for substitution
whenever a match is found, but it will only be substituted if the replacement will lead to an
improvement in the circuit size. Structural hashing is a technique of combining and reusing
multi-input expressions and subexpressions; it helps in removing duplicated gates structures
in CBMC-GC. SAT sweeping is a minimization tool which is widely used for equivalence
checking of combinatorial circuits [Kue04]. The idea of SAT sweeping is to prove that the
output of a sub-circuit is either constant or equivalent to some other sub-circuit (which also
helps in detecting duplicates). In both of these cases, the sub-circuit can be removed because
it is unnecessary. For circuit minimization, the program should first be translated to an
intermediate circuit. CBMC-GC uses AIGs as an intermediate circuit representation because
they translate each program statement into a circuit which encodes the bit-precise semantics
of the computation the statement performs. During the generation of the intermediate circuit,
structural hashing, and constant propagation are performed to keep the resulting circuit size
small. To generate the intermediate representation of the circuit, CBMC-GC uses the ABC
framework [SG] as it provides state-of-the-art logic synthesis methods. After the generation
of an intermediate circuit, a pattern based sub circuit rewriting is performed in a repeated
manner in combination with structural hashing, constant propagation, and a simplified
version of SAT-sweeping [Kue04]. When the source code is compiled with CBMC-GC, a
description of the circuit performing the computation, and a mapping between the input and
output identifiers and the corresponding circuit wire is obtained.

2.6.3 Compiling Low Depth Circuits

Most of the compilers for STC focused on creating size-minimal circuits for Yao’s Garbled
Protocol (Section 2.4). However, MPC protocols such as the GMW protocol (Section 2.5),
have round complexity that is dependent on the circuit depth. The round complexity becomes
a considerable bottleneck when these protocols are deployed in the real world network
settings, as the network latencies are usually in the range of tens or hundreds of millisec-
onds.
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ShallowCC [BHWK16] is a compiler extension for CBMC-GC that creates depth-minimized
Boolean circuits from ANSI C also while keeping the size minimal. It introduces optimized
building blocks that are up to 50% shallower than the previous constructions. It also imple-
ments multiple high-level and low-level depth minimization techniques.

Figure 2.4: ShallowCC’s compilation chain from ANSI-C to Boolean circuits [BHWK16]

ShallowCC adopts the CBMC-GC’s compilation approach for depth-minimization as illustrated
in Figure 2.4. The parts marked in gray are adaptations and extensions. The compiler needs
the input arguments and output variables in an ANSI C code to follow a particular naming
convention. In the first step, the code is preprocessed to identify and transform the reduction
statements on the source code level. In the second and third steps, all loops and function
recursions are unrolled using symbolic execution and the resulting code is transformed into
Single Static Assignment (SSA) form (Section 2.6.2.2). In the fourth step, the SSA form
(Section 2.6.2.3) is utilized to detect and annotate successive composition of arithmetic state-
ments. In the fifth step, all statements are instantiated with hand-optimized building blocks.
In the final step, gate-level minimization takes place (Section 2.6.2.5).

ShallowCC is capable of compiling circuits that are up to 2.5 times shallower than the hand op-
timized circuits and up to 400 times shallower than the circuits compiled from size optimizing
compilers, while as yet keeping up a competitive circuit size. The evaluation results on two
examples, biometric matching with 1024 bits and matrix multiplication with 5x5 bit elements
can be seen in Table 2.3. We can observe that the depth in biometric matching improved by
98.7% while the depth in matrix multiplication improved by 59.7%.

Functionality CBMC-GC ShallowCC Improvements
size depth size depth depth

Biometric matching 1024 2.9 M 7,181 2.9 M 90 98.7%
Matrix multiplication 5x5 127,225 42 128,225 17 59.7%

Table 2.3: Gate-level minimization limit: 600 seconds [BHWK16]
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2.6.4 Optimized Building Blocks

When designing complex Boolean circuits, optimizations play a significant role. Optimized
building blocks speed up compilation as they just need to be highly optimized once and can
be instantiated at compile time with low cost. We discuss a few examples optimized building
blocks that are used in this work.

2.6.4.1 Adder/Subtractor

An adder is a Boolean circuit that can perform the addition of two numbers. There are
two types of adders: half-adder and full-adder. A half adder has two inputs A and B, and
two outputs sum S and carry C . The sum is the XOR the AND of the inputs. A full adder
candders. A full adder has three inputs A, B and a carry input Cin, and two outputs sum S
and carry output Cout . First, a half adder would be used to calculate the sum of A and B;
then the second half adder would be used to add Cin to the sum calculated by the half adder.
Cout will be an OR function of the half adder carry outputs, just in case a carry is produced.
Parallel Prefix Adders (PPA) are used in logic synthesis to accomplish speedier addition under
size trade-offs by using a tree-based prefix network with logarithmic depth. Beuscher et al.
[BHWK16] proposed a design for PPA which allows halving the number of non-linear gates in
every aggregation layer of a PPA. They applied the design to Skylansy adder which is known
to have the lowest depth in all PPAs [Har03] and achieved a depth of [log(n)] + 1 and a
size of n[log(n)], for e.g., the size and depth of a 16 bits adder is 64 and 5, for a 32 bits
adder is 160 and 6, and for a 64 bits adder is 384 and 7 respectively. They also applied this
design to Brent-Kung adder [Har03] which is an alternate to Skylansy adder. The Brent-Kung
adder exhibited a trade-off between size and depth with a depth of 2[log(n)]− 1 and size of
3n.

Since the subtractor can be designed using the same approach as of an adder, it benefits to
the same extent from optimized addition.

2.6.4.2 Equivalence Comparator

An equivalence comparator (EQ) checks if two input bit strings of length n are equal and
outputs a single bit result. It can be implemented by a successive OR composition over
pairwise XOR gates that compare single bits. This results in a size of snX

EQ(n) = n− 1 gates
[KS08].

2.6.5 Compiler Comparision

In this section, we discuss different properties of the compilers. Table 2.4 which is taken from
[BFH+17] shows the comparison of the compilers.

17



2 Preliminaries

Compiler Language Interpreted Mix-mode Maturity Const. prop. Gate level opt.

CBMC-GC’12 [HFKV12] ANSI-C No No Yes Global

Dead gate elimination
Constant propagation
Theorem rewriting
SAT sweeping

KSS’12 [KSS12] DSL No No No No
Constant propagation
Dead gate elimination

PCF’13 [KSMB13] ANSI-C Yes No No Limited
Local constant propagation,
Dead gate elimination

ObliVM’15 [LWN+15] DSL Yes Yes No No No

OblivC’15 [ZE15]
DSL
ANSI-C

Yes Yes No Local
Local and limited [MGC+16]
constant propagation,
Dead gate elimination

TinyGarble’15 [SHS+15] Verilog VHDL No No Yes n/a

Dead gate elimination
Constant propagation
Rewriting
SAT sweeping

Frigate’16 [MGC+16] DSL No No Yes Local
Local constant propagation,
Dead gate elimination

Table 2.4: Comparision of different compilers [BFH+17]

In the table, we can see that CBMC-GC, KSS, TinyGarble and Frigate are integrated compilers
(Section 2.6.1.1) while PCF, ObliVM and OblivC are interpreted compilers (Section 2.6.1.2).
Only CBMC-GC, PCF, and OblivC support ANSI-C while others support domain-specific lan-
guages. All of them use dead gate elimination as an optimization technique which is a method
of removing gates which do not affect the output values. They also use constant propagation
to propagate values. Also, the table shows the compiler correctness (maturity) which is based
on the study by Mood et al. [MGC+16], along with the applied source and gate-level optimiza-
tion techniques. Mood et al. [MGC+16] identified compilation aborts with the input/output
notation that have been fixed in the current version of CBMC-GC. PCF uses a frontend com-
piler LCC that generates optimized bytecode for RAM-based architectures. TinyGarble and
Frigate store sequential building blocks in a compact way.

2.7 ABY Framework

Demmler et al. [DSZ15] created a framework for efficient mixed-protocol secure two-party
computation called ABY. The framework allows two parties to compute a function using
sensitive data while preserving the privacy of the data. The framework combines secure
computation schemes based on Yao’s Garbled circuit protocol (Section 2.4) along with
Arithmetic sharing and Boolean sharing (Section 2.5) but for our work we have used the
ones based on Boolean circuits.
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2.7.1 Basic Definitions

In this section, we explain the terminologies that are relevant for our work. The content is
based on the developers guide of the ABY framework [DSZ15].

Sharings Sharings in the ABY context means the secure computation techniques that are
used to preserve the privacy of the data. ABY has three types of available sharings:
Arithmetic sharing (S_ARI T H), Boolean sharing using the GMW protocol (S_BOOL),
and Yao’s sharing (S_YAO) based on Yao’s Garbled protocol. We use the GMW protocol
(S_BOOL) for evaluating our circuit securely.

Gates and Circuits ABY has a circuit object named Circuit; two sub-classes are derived from
this object called ArithmeticCircuit and BooleanCircuit. In our case, only BooleanCircuit
is used.
PutINGate and PutOUTGate can be used by the two parties to secret share their plaintext
input and reconstruct the plaintext output, respectively.

Wires In ABY a wire is uniquely identified by a wire ID which is a global identifier of type
uint32_t.

Shares A share object is used to bundle one or multiple wires which helps in simplifying
the design of the circuit. In ABY, a share is a variable which can be passed to gates to
perform operations and can also hold the output of gate operation. A share object
holds the plaintext values returned by the output gate after the execution of the secure
computation protocol.

A share object stores an array of uint32_t wire IDs and the length of this array is
denoted by bitlength of the share.

SIMD Gates Single Instruction Multiple Data (SIMD) allows the same operation to be applied
to multiple data items simultaneously. In secure-computation, SIMD gates can be used
to improve the circuit evaluation time. They also reduce the memory footprint of the
circuit.
A share is normally a single dimension array. SIMD gates allow multiple elements to
be stored on a wire which extends the share to a second dimension.

2.7.2 Setting up ABY

An instance of ABYParty class has to be generated for ABY to work. The ABYParty object can
then be used to start the secure computation process and also for defining the functionality. A
Circuit object of a specific type sharing, i.e., BooleanCircuit in our example is needed to
define this functionality, which can be obtained from the ABYParty object. ExecCircuit()
function of the ABYParty object needs to be called to run the secure computation protocol,
the function can be called once the functionality has been defined.
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2.7.3 Necessary Gate Types for our Implementation

In this section we introduce the input/output gates required by our framework. We also
discuss a few function gates from ABY which are relevant to our work. Function gates compute
on secret shared values. We introduce a few function gates that are supported by ABY for
Boolean circuits.

2.7.3.1 PutINGate

To load the plaintext inputs of the computing parties to their shares, a method called PutIN-
Gate is used. The method returns a share object holding a share or encryption of plain-
text.

The method has three parameters: val, bitlen, and role. Parameter val is the input value
which is loaded by one of the parties to generate the shared secret. This variable can be of
type uint8_t, uint16_t, uint32_t, uint64_t or a pointer to an array of such datatype.
The second parameter is bitlen which specifies the length of the plaintext, i.e., how many
bits of inputs should be read. It also specifies the number of wires in the generated share.
The last parameter is role which defines that which party provides the input of this share. It
can only have two values, i.e., CLIENT or SERVER.

2.7.3.2 PutSIMDINGate

To allow the creation of SIMD circuits, the PutINGate is replaced by PutSIMDINGate. It has
an extra parameter nval. The nval variable helps to define the number of variables to be
shared on a wire. The method returns a share object which can be used equivalently to a
non-SIMD share. This object encapsulates the shared secrets.

The PutSIMDINGate method also has three parameters, but unlike PutINGate (Section 2.7.3.1)
its first parameter is nvals which specifies the number of SIMD elements to be stored on a
single wire. The other three parameters val, bitlen and role serve the same function as defined
earlier (Section 2.7.3.1). However, a call to PutSIMDINGate with nvals = 1 is equivalent to
the calling PutINGate.

2.7.3.3 PutOUTGate

The PutOUTGate method is used for the decryption of a share in an interactive manner or to
reconstruct a shared-value to plaintext and store the result in a share. The PutOUTGate has
two parameters: s_out and role. The s_out parameter is the share object which would hold
the result after the evaluation of the circuit. The role parameter defines which party can see the
output; it can have one of the three values CLIENT, SERVER, or ALL.
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2.7.3.4 PutANDGate

The PutANDGate method performs a bit-wise AND operation on the two input shares and re-
turns a share object of the same bitlength but longer input share as a result.

2.7.3.5 PutORGate

The PutORGate method performs a bit-wise OR operation on the two input shares and returns
a share object of the same bitlength but longer input share as a result.

2.7.3.6 PutXORGate

The PutXORGate method performs a bit-wise XOR operation on the two input shares and re-
turns a share object of the same bitlength but longer input share as a result.
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3 Secure Matching

In this chapter, we describe problems related to stable matching, such as secure stable
matching and how it has been implemented for STC by different frameworks. The frameworks
by Doerner et al. [DES16] and Riazi et al. [RSS+17] have been discussed in detail as they are
currently the most optimized frameworks for secure stable matching.

3.1 Matching Problems

In this section we discuss matching problems in general as we are solving an assignment
problem. There are many available matching problems such as stable roommates problem
and Nash equilibrium, and so forth. The stable matching problem is closest to the underlying
problem of this thesis, because it works with two sets of the same size and also deals with
matching pairs. Also, the Hungarian algorithm can be reduced to Weighted Bipartite Matching
Problem [KMV91].

3.1.0.1 Stable Matching Problem

The stable matching problem is a problem to find a stable match between two equally sized
sets A and B. The two sets which are required by the algorithm can be considered two parties.
Both the sets should be of the same size which is denoted by n so that each participant
(element in the set) would have a match at the end of the execution. Members of set A
are called proposers while members of set B are called reviewers. The match is based on
the preferences of the elements and is not stable if some element x of set A prefers an
element y of set B over the currently assigned element of set B and the element y also prefers
element x over its current assigned element [GS13]. The stable matching algorithm is used
by many organizations, some famous examples include, college admissions and in supply
chain management that is matching of suppliers and consumers, but they currently rely on
third parties to process sensitive data. Since STC revolves around the concept of processing
information securely without the involvement of a trusted third party, so we recapitulate
some of the secure stable matching techniques.
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3.1.0.2 Stable Roommates Problem

The stable-roommate problem is a problem to find a stable match between a set of size s
where s is an even number. The matching creates n disjoint set of pairs of roommates where
n = s/2. The match is stable if there are no two participants that are not roommates and
prefer each other over their assigned partners.

3.1.0.3 Nash Equilibrium

The Nash equilibrium is amongst the fundamental concepts of game theory. Two players P1
and P2 are in Nash equilibrium if P1 takes the best decision he can, taking into account the
decision of P2 which remains unchanged and P2 takes the best decision he can, taking into
account the decision of P1 which remains unchanged. The same algorithm can also be applied
to a group of players; all players are in Nash equilibrium if they take decisions while taking
into account the decisions of other players which remain unchanged.

3.1.1 Secure Stable Matching

Golle [Gol06] created a privacy-preserving version for the classic stable matching algorithm
(Gale-Shapley Algorithm) [GS13] where the matching protocol is performed by an honest
group of matching authorities. He argued that the generic MPC protocols are too impractical
to implement a complex algorithm like Gale-Shapley. The protocol requires O(n5) asymmetric
key operations, and it has never been practically implemented. Franklin et al. [FGM07]
identified cases where the Golle protocol would fail and proposed two of their own protocols
one of which was based on Golle’s protocol and relies on XOR secret sharing scheme and
requires O(n4) public key operations and the other one uses garbled circuits in combination
with Naor-Nissim’s protocol for SFE [NN01] which had a complexity of O(n4). Both of these
protocols have O(n2) communication rounds.

Keller et al. [KS14] were the first to propose implementing the algorithm by using ORAM
and garbled circuits. Oblivious RAM (ORAM) allows the execution of a RAM program while
hiding the access pattern to the memory. They reported matching 128 x 128 participants in
around 2.5 hours but did not include 1000 processor-days of the offline compute time. Zahur
et al. [ZWR+16] used ORAM to implement the book version of Gale-Shapley and took over 33
hours to compute the matching of 512 x 512 participants. Blanton et al. [BSA13] proposed a
secure but complex construction of Gale-Shapley using Breadth First Search (BFS). Their idea
was to permute the rows and column of an adjacency matrix. BFS allowed the algorithm to
iterate over a whole column of the adjacency matrix at once, but the algorithm originally has
to shift between the proposers which is why this was not beneficial.
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3.1.1.1 Scalable Secure Stable Matching

Doerner et al. [DES16] adapted the classic stable matching algorithm (Gale-Shapley Algo-
rithm) [GS13] in the context of secure two-party computation. The two input sets A and B
are lists containing preference of each participant which can be divided amongst the two
parties either by partitioning or by XOR-sharing (XORing the inputs that no party would be
able to see the preference).

The algorithm iterates through the list of proposers based on their preference and swaps them
when the match is validated or invalidated because of other matches. The cost of iterating
over potential pairings is at most n2, but since it cannot be determined in advance that which
proposer’s preference list will be evaluated, so they store the results of these pairing in an
ORAM which helps to reduce the overall cost of reading the preferences. This implementation
requires n2 accesses to an ORAM of size n2.

Since the secure implementation of the algorithm requires the proposer lists to be selected
obliviously rather than in-order like in the original algorithm, they design oblivious linked
multi-list to be able to iterate through n separate arrays while hiding which component of
the array is being iterated. The algorithm also uses the fastest available implementations
of square-root ORAM, circuit ORAM and oblivious queue construction from Zahur et al.
[ZWR+16]. It modifies these queues to stop allocation of dynamic layers by introducing
a public size bound. Their implementation for the 512 x 512 participants matching took
around 48 minutes which was 40 times faster than that of Zahur et al. [ZWR+16] which was
over 33 hours.

Riazi et al. [RSS+17] proposed the first provably secure and scalable implementation of
stable matching by using Yao’s garbled circuit protocol along with ORAM. They introduced
sub-linear circuit size which can scale to high set sizes and early termination technique (ETT)
which provides efficiency/privacy trade-off. Since random access is a very costly operation
in GC with linear access cost when multiplexers are used with flip-flops, so they have used
ORAM which has logarithmic access cost.

They start by generating a netlist offline with describing the functionality as a Boolean circuit,
they have written the stable matching algorithm in a hardware description language (Verilog),
and then they fit it into a hardware synthesis tool to get the netlist. Then they convert it
into an ordered netlist by sorting it into a topological order to avoid any deadlocks. The
ordered netlist is then passed as an input to the GC protocol. The GC protocol (Section 2.4)
is then run to produce a stable matched list as an output. The worst case scenario excluding
the invalid proposals in the GC is O(n2). In the sub-linear size circuit, the sub-linearity
is concerning the number of participants in each group. They have a sub-module named
algorithm combinational circuit which acts as a control flow of the whole circuit and efficiently
implements the stable matching algorithm then they have a main selection circuit which
finds a free participant (that is not matched yet) in the previous clock-cycle and fir it to the
algorithm combinational circuit. They also have a memory module which can be implemented
as ORAM. Since in the garbled protocol it is not possible to detect if a match is stable or
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not, the ETT protocol helps to detect a stable match between the process by revealing one
bit of information between each clock-cycle. It is an optional protocol because it comes at
the cost of revealing the total number of proposal needed for a stable match. For a 512
x 512 participants problem this protocol takes 8 hours of execution time without using
ETT and around 5 minutes execution time with using ETT. As compared to Doerner et al.
[DES16] the standard execution without ETT takes more time, but the execution with ETT is
faster.
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In this chapter, we explain our design choices for a privacy-preserving assignments framework.
We develop a framework which solves the assignment problem in a privacy-preserving
manner. We start by giving an overview of the architecture of our solution and move on to
explain the Hungarian algorithm which is used by our framework to solve the assignment
problem.

4.1 Overview

We focus on solving the assignment problem which is one of the most fundamental combi-
natorial optimization problems in the field of computer science and mathematics, without
using a trusted third-party in a privacy-preserving manner. We use the Hungarian algorithm
[Kuh10] to be able to solve the assignment problem in polynomial time. In this problem,
there are n workers and n jobs. There is a cost associated with every worker-task pair, i.e.,
the cost required for a worker i to perform task j. The idea is to minimize the total cost. Each
task should be assigned to one worker, and one worker should only have one assigned task.
We utilize secure computation techniques to compute the results and help the workers get
their preferred job without revealing their preferences.

The concrete application example that we aim to realize is privacy-preserving assignments
of tasks for students based on their priority lists. This means that the student is presented
with a list of topics and he prioritizes them according to his preference. In the assignment we
make sure that the happiness of the students should be maximized, i.e., every student gets a
topic according to his preference, while keeping the overall cost of the assignments minimum.
Currently, there are systems in place that solve assignment problems, such as The National
Resident Matching Program (NRMP) where applicants are placed into residency and fellowship
positions based on their preference list, but they require a trusted third party to compute the
results for them. Our system would guarantee that no party learns about the input of other
parties and the whole computation is executed by ensuring the privacy of the data. Currently,
to achieve the goal of computing privacy-preserving assignments securely one needs to use
multiple frameworks, or the intervention of a third-party is required.
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Figure 4.1: Global view for privacy-preserving assignments

Figure 4.1 illustrates our system design. This is a distributed system which incorporates three
modules. The first module is the front-end which takes the inputs from the user, encrypts
them using the keys of the computing parties on the user’s end and sends it to the STC
module. The front-end is used to manage all the administrative and user actions. Second is
the Boolean circuit generation module which is needed to convert the Hungarian algorithm to
a Boolean circuit. The last is an STC module which uses the outputs of the first two modules
as an input and produces a result without compromising the privacy.

The front-end server helps with the management of the framework. It calculates the number
of participating users; the number serves as an input for the creation of Boolean circuits. It
also collects user inputs and then sends them to the STC modules. It also makes it easier for
the participants to encrypt their input and send it to the computing parties without the use of
any extra utility.

In STC we either represent a function as a Boolean circuit or as an arithmetic circuit. For
our framework, we chose Boolean circuits because our computation included non-arithmetic
operations such as comparison which if implemented as an arithmetic circuit would be very
inefficient. Also concerning depth, Boolean circuits are exponentially more dynamic than
arithmetic circuits [GS91].

We use two parties for this computation. Since there is no single party involved in the
computation, it increases the trust factor that the computation can never be influenced. Any
computing party would never have the input in clear even after the decryption it would hold
a XORed input which would not reveal anything about the original input. We assume that
both parties would never communicate to view the original input and this is what makes the
protocol secure.
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4.1.1 System Flow

Consider the above described example of a seminar course where n topics are being offered
for n students.

Step 1: Problem setup. First, the initialization phase takes place where the administrator
uses our front-end and sets a limit for the maximum number of participants. He then
adds all the topics which are being offered. He shares the link with the students so that
they can submit their choices.

Step 2: Providing inputs. Next, the input sharing phase starts when a student visits the link,
he sees the list of topics being offered along with the fields where he needs to enter his
data. He arranges the topics according to his preference, and after filling the form, he
submits it. When he clicks submit, the front-end module checks if the inputs are valid.
The module generates a random number and XORs it with the preference of the user.
The public-keys of the two parties that would be securely computing the assignments
are then used to encrypt the data on the client end. The random number gets encrypted
with public key of the first computing party, and the XORed input gets encrypted with
public key of the second computing party before being sent to the front-end module.

Step 3: Circuit generation. Once we have the value of n from the front-end which is the
total number of participants, we can proceed to the circuit generation phase where we
generate a Boolean circuit for the Hungarian Algorithm by using the Boolean circuit
generation module or use a pre-generated Boolean circuit. Once the deadline for the
topic selection is over, the front-end sends the encrypted inputs to both the parties.

Step 4: Computation. In the secure computation phase which is also the final phase, the
computation is then triggered by the administrator who has access to the two computing
servers and can start the computation. The Boolean circuit is used as an input for the
STC module. The computing parties in the STC module already have the inputs from
the users, and those inputs would be used as the inputs for the secure computation.
The STC module then computes the result and sends them back to the administrator
who then sends it to the participants. This way, every student ends up with a topic of
his choice without revealing his preferences to anyone else.

4.1.2 Front-end

Our idea is to have our front-end based on a web framework. We have two modules in the
front-end: one for the administrator and the other one for the participants. The front-end
consists of an administrative panel where the administrator can set a limit for the number of
participants he wants to allow. Also, the module allows the administrator to add and remove
topics as needed. The other module is of the participants. When a participant visits the
portal, a page is displayed to him. He sees the list of available topics for the seminar and then
arranges the topics according to his priority and along with his personal information submits
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the data to the server. The preferences (inputs) are then XOR-shared before getting encrypted
on the participant’s machine by using the public-keys of the two computing parties and then
sent to the two-parties. The XOR-sharing makes sure that none of the two computing parties
can see the inputs in clear (such as one-time-pad encryption), while the public key encryption
makes sure that the front-end server does not see both shares of the XOR-sharing, from
which he could retrieve the result. The computing parties can decrypt their shares that were
encrypted using their public keys since they own the private keys.

4.1.3 Circuit Generation Module

We take an implementation of the Hungarian algorithm [Cde14] in ANSI C and adapt it
according to an available circuit generation module. The module would then take the ANSI
C program as an input and generate a corresponding Boolean circuit. Since the bound for the
loops in the program have to be known before the circuit generation, we need to specify a
bound for the loops inside the program to avoid infinite loops in the circuit generation process
and for the circuit to be generated correctly. The Boolean circuits could be pre-generated or
triggered by the front end.

4.1.4 STC Module

We use an STC module which would help us achieve the privacy-preserving assignments. The
module takes as an input the Boolean circuit which is generated by the circuit generation
module. It also takes the encrypted inputs from the participants, which were sent to the two
computing parties by the front-end. The inputs are first decrypted using the respective private
keys and then used in the circuit for computing the assignment securely. Once the module
completes the circuit computation, it will then send the output results to the participants
without breaching their privacy. The overall security depends on the security of the STC
module, i.e., either malicious security or semi-honest security, depends on the STC module
we use.

4.2 Hungarian Algorithm

The Hungarian algorithm [Kuh10] which is also known as the Kuhn-Munkres algorithm is
a combinatorial optimization problem which solves the assignment problem in polynomial
time. The best-known complexity for the Hungarian algorithm is O(n3) but the worst case
running time of our implementation is O(n4). We take inputs as a cost matrix and then
apply row operations on them to create zeros, where zero means a possible assignment
in our case. Only one assignment is possible in each row and column. Lines are drawn
horizontally and vertically to cover zeros with the minimum lines possible. If the lines are
equal to the size of the matrix, we have an optimal solution. Figure 4.2 shows the flow of the
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algorithm. The algorithm can be divided into seven steps, and all the operations are applied
to a cost matrix M ′ which is a copy of the original cost matrix M . Now we explain each step
in detail.

Step 1: Rowminimum. In this step, we calculate the minimum value in a row and subtract
it from all the elements in the row; this is done for all rows.

Step 2: Columnminimum. In this step, we calculate the minimum value in a column and
subtract that value from each element in the column; this is done for all columns.

Step 3: Check for optimal solution. In this step, we check if we already have an optimal
solution, i.e., the number of selected zeros is equal to the size of the matrix. If we have
an optimal solution we move to step 7, else we move to step 4.

Step 4: Mark selected zeros. In this step, we mark zeros which are not yet marked and their
rows and columns are not yet selected and then we move to step 6 to create additional
zeros. We move to step 5 if no further entries can be marked.

Step 5: Create augmenting path. In this step, we mark all rows for assignment and move
to step 3 to check for an optimal solution.

Step 6: Create additional zeros. In this step, we select the smallest element that is not
covered by any line. We subtract it from all uncovered elements and add it to all the
elements covered twice.

Step 7: Display optimal solution. In this step, the optimal solution is displayed on the orig-
inal cost matrix.
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Figure 4.2: Hungarian Algorithm
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4.2.1 Example

Suppose we have three workers {w1, w2, w3} and three tasks {t1, t2, t3}. Given below is a
cost matrix M . Each pair (wi , t j) shows the cost of worker i to perform a task j where i and
j are in {1,2, 3}.

M =

t1 t2 t3
 !w1 77 13 88

w2 31 11 94
w3 15 33 71

In step one, we start with calculating row minimum, which is the lowest value in each
row. Once we have the row minimum, we subtract it from each row to get zero val-
ues.

M ′ =

t1 t2 t3
 !w1 64 0 75 (−13)

w2 20 0 83 (−11)
w3 0 18 56 (−15)

In step two, we do the same with columns, i.e., we calculate the lowest value in each column
and subtract the whole column with that value.

M ′ =

t1 t2 t3
 !w1 64 0 19

w2 20 0 27
w3 0 18 0

(−0) (−0) (−56)

In step three, we look for the minimum number of lines that need to be drawn in order to cover
all zeros. We tick a column or a row in order to achieve this. If the number of lines needed to
cover the zeros is equal to the size of the matrix then we have an optimal solution. If the lines
are less than the size of the matrix then we move to the next step.

M ′ =

t1 t2 t3
 !w1 64 0 19

w2 20 0 27
w3 0 18 0 ✓

✓

Now we combine step four, five and six for the next three steps. Since the number of lines
required to cover the zeros was two which is less than the size of the matrix we create
additional zeros to reach an optimal solution. We check for the smallest element which is not
ticked and subtract it from all the unticked elements and add it to all the elements that are
ticked twice, i.e., an element whose both row and column are ticked. The smallest element,
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in this case, is 19, so we subtract 19 from all the unticked elements of the matrix and add it
to all the elements that are ticked twice.

M ′ =

t1 t2 t3
 !w1 45 0 0

w2 1 0 8
w3 0 37 0

We move back to the step 3 to find an optimal solution by ticking the rows and columns. Here
the number of lines required to cover all zeros is 3 which is equal to the size of the matrix
which means we have an optimal solution.

M ′ =

t1 t2 t3
 !w1 45 0 0 ✓

w2 1 0 8 ✓
w3 0 37 0 ✓

We select the zeros which would be the cost of an assignment. We need to select zeros in such
a way that it should be the only selected zero in the whole row and column which means
that one worker is assigned to one task and no task is assigned to multiple workers. First, we
move to the row of worker w2 because it has a single zero entry which means it is the only
assignment possible. After we mark the task t2 as assigned to worker w2 we can ignore all
zero values in the task t2 column because the task cannot be assigned to someone else. We
move to worker w1 where we have two zero values which means two possible assignments.
Since the task t2, is already assigned, so we move to the next zero which is task t3 which gets
assigned to worker w1. The last assignment is for worker w3, we check the first zero value
and select it as the second zero value is in the column of task t3 which is already assigned to
worker w1.

M ′ =

t1 t2 t3
 !w1 45 0 0

w2 1 0 8
w3 0 37 0

In the final step, we replace the matrix M ′ with the original cost matrix M . The position of
the assignments remain the same. The cost to perform the tasks {t1, t2, t3} is {15,11,88},
which, as we can observe, is the optimal assignment.

M =

t1 t2 t3
 !w1 77 13 88

w2 31 11 94
w3 15 33 71
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This section covers all the details about the implementation of our framework. We used
PHP, Javascript, HTML, and CSS for the front-end framework. For the circuit generation we
used CBMC - GC (Section 2.6.2), and for the STC part, we used ABY [DSZ15]. This section
contains all the technical details of our system and it also covers the complexity analysis of
our implementation of the Hungarian algorithm. Later in the section, we describe how we
have used ABY to run our computation securely.

5.1 Technical Details of the Front-end

The front-end uses PHP for its server-side and HTML, CSS for the design. We use RSA for the
encryption of user data. The large key size in RSA is essential for increasing the security of the
algorithm. We encrypt the user input in RSA-2048 encryption by making use of a Javascript
framework called jsencrypt [Tra13] because to ensure security it is not recommended to
implement an existing cryptographIC algorithm, and the use of libraries is always encouraged.
The library jsencrypt is a wrapper which takes public and private key pairs generated by
OpenSSL in PEM format and translates it to the variables required by the jsbn library [Wu09].
Jsenrcypt heavily relies on jsbn which is written by Tom Wu. We have divided the front-end
functionalities into two types which are further discussed below.

5.1.1 User Panel

In this section, we discuss the functions of the users. The user will always visit this home
page where all the available topics for the seminar would be displayed. The second step
is where the user will fill the form according to his preference. In case, if the user assigns
the same priority to more than one topic, an error would be displayed which can be seen in
Figure 5.1. If the submission is successful, then a message would be displayed to the user as
shown in Figure 5.2. If the number of allowed participants are already filled, then an error
would be displayed to the user.

The home page fetches all the topics stored in our system and displays them to the user.
After the form is filled by the user, a validation runs which ensures that no two topics are
assigned the same priority. After validation, the preference of the user is encrypted on the
browser using RSA-2048 encryption and is shared with the computing parties using secret
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sharing. A random number is generated for every choice and is XORed by the priority. The
new number and the random number are then encrypted separately on the user’s machine by
using the public key’s of two computing parties A and B respectively to avoid the system from
getting inputs in plain. The encrypted preference list along with the user data is then sent
to the server. A success message or an error message is returned depending if the limit for
the maximum users is reached or not. The secret sharing and encryption helps us to never
transfer data in plain and also ensures that no party would have the full-data access preserve
the privacy of the user.

Figure 5.1: Duplicate Priority Detection
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Figure 5.2: Successful Submission

5.1.2 Administrator Panel

In this section, we discuss the administrative functionalities. Figure 5.3 shows the entry point
of the administrator. The administrator needs a password to log in to the system which is
communicated via direct communication but could be easily modified to a symmetric key
encryption for password sharing. As manually hashing the password and verifying it can be
hectic and not secure, the password is stored as a hash in the system by using password_hash
which generates a unique salted hash and is verified using password_verify which are the
built-in functions provided by PHP. These functions allow hashing and securely verifying
the passwords. After logging in, the administrator has access to four functionalities which
are pre-defined in the system. He can configure the limit for the number of users, which
is a number that gets set in the system and is checked against to allow/deny participants.
Add and remove topics for the seminar and set public-keys for the computing parties in
which the old keys get replaced by the specified keys, this is illustrated in Figure 5.4. In
Figure 5.5 and Figure 5.6 we can see how an administrator can change the number of allowed
users and the message that is displayed on an update. Figure 5.7 shows the functionality of
adding topics to the system. All the added topics are written to the system. In Figure 5.8, we
can see the list of available topics and select the topic we no longer need. After a topic is
removed from the system, the list is updated, and the removed topic is displayed, as shown
in Figure 5.9. Figure 5.10 and Figure 5.11 illustrate the mechanism of changing keys of the
computing parties. The computing parties can always change for different runs of the system,
i.e., if the system is deployed for another course. This functionality makes it easier for the
administrators to update the information with one click.
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Figure 5.3: Administrator Login

Figure 5.4: Administrator Panel

Figure 5.5: Set number of users

Figure 5.6: Updated number of users
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Figure 5.7: Add topics

Figure 5.8: Remove topics

Figure 5.9: Topic removed

Figure 5.10: Update Public Keys

Figure 5.11: Public Keys Updated
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5.2 Circuit Generation in CBMC - GC

We have optimized an existing implementation of the Hungarian algorithm in C [Cde14].
The original program was created for a rectangular matrix, and we have changed it for our
use case which is a square matrix. We have optimized it for size by using unsigned char
which is 8 bits instead of int 32 bits. In step 1 and step 6 we have reduced the size of minVal
from INFINITY to SIZE+1 which in our case would never exceed this value because we are
using priorities as a cost so the maximum value will always be SIZE. This saves us from using
extra wires which would then be used in the comparison. We are using priorities instead of
costs so this implementation can support 126 users at a time. If we want to make it general
concerning cost or to increase users, we can change the data type of minVal to int and can use
the maximum value of an integer. We use CBMC - GC to convert our C program to a Boolean
circuit. Since CBMC - GC allows a C program to be converted to a Boolean circuit, so the
code presented in this section is very C-like. However, the framework has its particular input
and output style and some limitations that are discussed further in this section. To reduce the
circuit size even further we wanted to convert the single-bit values to type Bool but currently
boolean types are not supported by CBMC - GC. We now discuss the steps that are required to
create a Boolean circuit by using CBMC - GC.

5.2.1 Initilization

Listing 5.1 shows the structure of the data and the globally defined variables. The structure
refers to a matrix M . The size of the matrix is SIZE, we have defined it as 4 here for example but
it can be changed as per need. In the struct, C holds the actual cost matrix. The row_marked
and col_marked variables refer to the rows and columns that have been selected because of a
selected zero and marked being the zero that has been selected. The row_covered, col_covered,
lonePrime holds the value of ticked rows, ticked columns and the index of the newly marked
value as described in step 5. The step variable saves the current step. The final assignment is
saved to the result.

1 # define SIZE 4
2

3 typedef struct {
4 unsigned char C[SIZE ][ SIZE ];
5 unsigned char row_marked [( SIZE)];
6 unsigned char col_marked [( SIZE)];
7 unsigned char marked [( SIZE)][( SIZE)];
8 unsigned char row_cover [( SIZE)];
9 unsigned char col_cover [( SIZE)];

10 unsigned char step;
11 unsigned char lonePrime [2];
12 unsigned char result [( SIZE)];
13 } Munkres ;
14

15

16 unsigned char A[SIZE ][ SIZE] = {0};
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17 unsigned char done = (SIZE);
18 Munkres M={0};

Listing 5.1: Data structures

5.2.2 Main Program

Listing 5.2 shows the main body of the program which is also the entry point of our program.
CBMC - GC has a specific format of inputs and outputs. In our case, we are using variables as
input so it is INPUT_A_0 for the first input of computing party A and INPUT_B_0 for the first
input of computing party B. The variables can be numbered according to the need, we have
16 inputs from each party, so we number them from 0−15. The output can either be returned
as an object or a variable. We are returning an object, so we do not need to define an output
variable explicitly. The default function which gets executed is mpc_main however in CBMC -
GC we can also define another entry point while running the framework. If the entry point of
the program is another function, we need to specify it while executing the framework with
the argument –function function_name. However, we have defined the default function in
this case, in the mpc_main function inputs values from party A and B are being XORed before
being assigned to the Matrix M. This step brings the priorities to the original state before
being computed. We then move to the next step which is compute assignments by calling the
function get_munkres which is described in Section 5.2.3.

1 Munkres mpc_main ( unsigned char INPUT_A_0 , unsigned char INPUT_A_1 ,
unsigned char INPUT_A_2 , unsigned char INPUT_A_3 , unsigned char
INPUT_A_4 , unsigned char INPUT_A_5 , unsigned char INPUT_A_6 , unsigned
char INPUT_A_7 , unsigned char INPUT_A_8 , unsigned char INPUT_A_9 ,
unsigned char INPUT_A_10 , unsigned char INPUT_A_11 , unsigned char
INPUT_A_12 , unsigned char INPUT_A_13 , unsigned char INPUT_A_14 ,
unsigned char INPUT_A_15 , unsigned char INPUT_B_0 , unsigned char
INPUT_B_1 , unsigned char INPUT_B_2 , unsigned char INPUT_B_3 , unsigned

char INPUT_B_4 , unsigned char INPUT_B_5 , unsigned char INPUT_B_6 ,
unsigned char INPUT_B_7 , unsigned char INPUT_B_8 , unsigned char
INPUT_B_9 , unsigned char INPUT_B_10 , unsigned char INPUT_B_11 ,
unsigned char INPUT_B_12 , unsigned char INPUT_B_13 , unsigned char
INPUT_B_14 , unsigned char INPUT_B_15 ) {

2

3 // XOR input values from two parties to obtain original priorities for the
matrix and call the computing function .

4 unsigned char i;
5 unsigned char A[NP][NP] = { 0 };
6 A [0][0] = bitXor (INPUT_A_0 , INPUT_B_0 );
7 A [0][1] = bitXor (INPUT_A_1 , INPUT_B_1 );
8 A [0][2] = bitXor (INPUT_A_2 , INPUT_B_2 );
9 A [0][3] = bitXor (INPUT_A_3 , INPUT_B_3 );

10 A [1][0] = bitXor (INPUT_A_4 , INPUT_B_4 );
11 A [1][1] = bitXor (INPUT_A_5 , INPUT_B_5 );
12 A [1][2] = bitXor (INPUT_A_6 , INPUT_B_6 );
13 A [1][3] = bitXor (INPUT_A_7 , INPUT_B_7 );
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14 A [2][0] = bitXor (INPUT_A_8 , INPUT_B_8 );
15 A [2][1] = bitXor (INPUT_A_9 , INPUT_B_9 );
16 A [2][2] = bitXor (INPUT_A_10 , INPUT_B_10 );
17 A [2][3] = bitXor (INPUT_A_11 , INPUT_B_11 );
18 A [3][0] = bitXor (INPUT_A_12 , INPUT_B_12 );
19 A [3][1] = bitXor (INPUT_A_13 , INPUT_B_13 );
20 A [3][2] = bitXor (INPUT_A_14 , INPUT_B_14 );
21 A [3][3] = bitXor (INPUT_A_15 , INPUT_B_15 );
22

23 Munkres M={0};
24

25 for (i = 0; i < SIZE; i++) {
26 unsigned char j;
27 for (j = 0; j < SIZE; j++) {
28 M.C[i][j] = A[i][j];
29 }
30 }
31 return get_munkres (A, M);
32 }

Listing 5.2: Main Program

5.2.3 Compute Assignments

Listing 5.3 shows the main function which is responsible for all the computation. In this
function, we initialize the matrix and then call different steps depending on the state of
the matrix as previously described in Section 4.2. The original code used switch cases. We
replaced them with if-else statements as we were not able to use the switch implementation
with CBMC-GC as they were not supported. After each step, the values of the matrix get
updated and are passed to the next step. This is important because the same matrix is shared
between all steps, this way we do not need to use extra variables to store the values, which
would increase the size of the circuit and also make it difficult to manage the code. The while
loop is executed O(n) times because it would at most run SI Z E times and since all the steps
are being called inside the while loop with step 4 having the highest complexity O(n3) as we
later analyze in Section 5.2.7, so the asymptotic complexity is O(n4).

1 Munkres get_munkres ( unsigned char A[SIZE ][ SIZE], Munkres M) {
2 unsigned char done = SIZE;
3 unsigned char i;
4 unsigned char j;
5 unsigned char theEndIsNear = 0;
6

7 // Initialize the attributes of matrix and run the computation until an
optimal solution is found.

8 for (i = 0; i < SIZE; i++) {
9 M. row_cover [i] = 0;

10 M. row_marked [i] = 0;
11 for (j = 0; j < SIZE; j++) {
12 M. marked [i][j] = 0;
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13 M. col_cover [j] = 0;
14 M. col_marked [j] = 0;
15 }
16 }
17

18 M.step = 1;
19 M = step1(M);
20 M = step2(M);
21 while ( theEndIsNear != 1) {
22 if (M.step == 3) {
23 M = step3(done , M);
24 } if (M.step == 4) {
25 M = step4(M);
26 } if (M.step == 5) {
27 M = step5(M);
28 } if (M.step == 6) {
29 M = step6(M);
30 } if (M.step == 7) {
31 M = step7(M);
32 theEndIsNear = 1;
33 }
34 }
35 }

Listing 5.3: Function to compute assignments

5.2.4 Step 1: Row and ColumnMinimum

In Listing 5.4, we subtract the minimum value of each row from every element of that row.
The same is repeated for the columns. The aforementioned gives us at least one zero in each
row and column, after which we move to step 2. We changed the type of minVal from double
to unsigned char which reduced the bits from 64 to 8. We have also changed the value of
minVal from INFINITY to SIZE+1 since we are using priorities and not costs. In this case, the
largest number required for the first comparison would be 1 more than the total number of
available topics. This is also a size optimization for the circuit, and the complexity of this
step is O(n2) because of the nested for-loops used to iterate over the matrix. The original
code reduced rows only which was not always correct because there were cases when there
were no zeros after row reduction, so we added column reduction in this step to ensure that
we have at least one zero in each row and column. This is also an optimization because if
it is not done, then we need to run an additional step (step 6) later to create zeros which
increases program complexity.

1 Munkres step1( Munkres M) {
2 unsigned char i;
3 unsigned char j;
4 // For each row , calculate the smallest element and subtract it from

every element in the row.
5 for (i = 0; i < (SIZE); i++) {
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6 unsigned char minVal = SIZE +1;
7 for (j = 0; j < (SIZE); j++) {
8 if (M.C[i][j] < minVal ) {
9 minVal = M.C[i][j];

10 }
11 }
12 for (j = 0; j < (SIZE); j++) {
13 M.C[i][j] = M.C[i][j] - minVal ;
14 }
15 }
16 // For each column , calculate the smallest element and subtract it from

every element in the column .
17 for (i = 0; i < (SIZE); i++) {
18 unsigned char minVal = SIZE +1;
19 for (j = 0; j < (SIZE); j++) {
20 if (M.C[i][j] < minVal ) {
21 minVal = M.C[j][i];
22 }
23 }
24 for (j = 0; j < (SIZE); j++) {
25 M.C[j][i] = M.C[j][i] - minVal ;
26 }
27 }
28 M.step = 2;
29 }

Listing 5.4: Row and Column Minimum

5.2.5 Step 2: Mark Rows and Columns

In Listing 5.5, we check for all the zero values in the matrix which are not yet marked, which
means the possible assignments that have not been selected yet. If the row and column of a
zero value are not yet marked, we set the value of marked as t rue and also mark the row
and column which had the assignment, and proceed to step 3. The complexity of this step is
O(n2) because it uses nested loops to star zeros in the matrix and mark the corresponding
row and column.

1 Munkres step2( Munkres M) {
2 unsigned char i;
3 unsigned char j;
4 // Find a zero in the matrix and mark it along with its row and column ,

repeat for all elements in the matrix .
5 for (i = 0; i < (SIZE); i++) {
6 for (j = 0; j < (SIZE); j++) {
7 if (M.C[i][j] == 0 && !M. marked [i][j]) {
8 if (!M. row_marked [i] && !M. col_marked [j]) {
9 M. marked [i][j] = 1;

10 M. row_marked [i] = 1;
11 M. col_marked [j] = 1;
12 break;
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13 }
14 }
15 }
16 }
17 M.step = 3;
18 }

Listing 5.5: Mark Rows and Columns

5.2.6 Step 3: Check for Optimal Solution

In Listing 5.6, for every marked value in step 2 we mark its column as covered. Then we
check if we have covered all columns with the minimum number of marked lines, i.e., we
have an assignment in all columns; if yes, then we proceed to the last step, i.e., step 7 else we
move to step 4 for further processing. The complexity of this step is O(n2) which is inevitable
because we use nested loops to cover the columns of all selected zeros and we have to iterate
over all values in the matrix.

1 Munkres step3( Munkres M) {
2 unsigned char i;
3 unsigned char j;
4 unsigned char cont = 0;
5 // Cover each column containing a marked zero.
6 for (i = 0; i < (SIZE); i++) {
7 for (j = 0; j < (SIZE); j++) {
8 if (M. marked [i][j] == 1) {
9 M. col_cover [j] = 1;

10 cont ++;
11 }
12 }
13 }
14 //If all columns are covered then it means we have an optimal solution

and proceed to step 7, otherwise proceed to step 4.
15 if (done == cont) {
16 M.step = 7;
17 } else {
18 M.step = 4;
19 }
20 }

Listing 5.6: Check for Optimal Solution

5.2.7 Step 4: Mark Selected Zeros

In Listing 5.7, we check if for all the selected zeros their corresponding rows and columns
have been marked. If they are marked, then we proceed to step 6 to create additional zeros.
If we only have the newly created zeros from step 6, we move to step 5 for further processing.
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The complexity of this step is O(n3) because here we are building augmented path for the
matrix by gaining a constant number of alternating elements in each run. Since this step is
repeated until we have no uncovered zeros so this step adds the complexity of O(n) to the
nested for loops having a complexity of (n2) making it O(n3).

1 Munkres step4( Munkres M) {
2 unsigned char end = 0;
3 int markedIndex = 0;
4 // Repeat until there are no zeros left that are not covered .
5 while (end == 0) {
6 unsigned char i;
7 unsigned char j;
8 for (i = 0; i < (SIZE); i++) {
9 unsigned char j;

10 for (j = 0; j < (SIZE); j++) {
11 markedIndex = -1;
12 if (M. marked [i][j] == 1) {
13 markedIndex = j;
14 break;
15 }
16 }
17 // Find a zero which is not covered and prime it.
18 for (j = 0; j < (SIZE); j++) {
19 end = 1;
20 if (M.C[i][j] == 0 && M. row_cover [i] != 1
21 && M. col_cover [j] != 1) {
22 M. marked [i][j] = 2;
23 //If there is no marked zero in this row go to step 5.
24 if ( markedIndex == -1) {
25 M. lonePrime [0] = i;
26 M. lonePrime [1] = j;
27 M.step = 5;
28

29 return M;
30

31 } else {
32 // Mark this row as covered and mark the column containing the

primed zero as not covered
33 end = 0;
34 M. row_cover [i] = 1;
35 M. col_cover [ markedIndex ] = 0;
36 }
37 }
38 }
39 }
40 }
41 // Proceed to step 6 to create additional zeros.
42 M.step = 6;
43 return M;
44 }

Listing 5.7: Mark selected zeros
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5.2.8 Step 5: Create Augmenting Path

In Listing 5.8, we check the additional rows marked by step 4 and convert it into the acceptable
form to detect the final assignment. All the newly created zeros marked by step 4 are then
detected here, and all zeros in the matrix are marked with 1 along with the corresponding
rows. We then go back to step 3 to check for an optimal solution. We have optimized this
step by removing unnecessary loops which were not adding anything to the functionality
but were just there to increase the running time, and we also removed the memcpy function
that was used to copy matrix into memory and was not providing any benefit in the circuit
level. The complexity of this step is O(n2) since we are just using for loops with O(n) to mark
the primed zeros from step 4 and a while loop with O(n) complexity to repeat it until all
primed zeros are marked with no starred zero in their column making the total complexity
O(n2).

1 Munkres step5( Munkres M) {
2 unsigned char mat [( SIZE)][( SIZE) ]={0};
3 // Copy all marked value to mat variable for further processing .
4 for ( unsigned char i = 0; i < (SIZE); i++) {
5 for ( unsigned char j = 0; j < (SIZE); j++) {
6 mat[i][j]=M. marked [i][j];
7 }
8 }
9 unsigned char path [( SIZE) ][2]={0};

10 unsigned char count = 0;
11

12 path[count ][0] = M. lonePrime [0];
13 path[count ][1] = M. lonePrime [1];
14 unsigned char i;
15 unsigned char done = 0;
16

17 // Create a series of alternating primed and starred zeros. For every
uncovered primed zero found in step 4, we might have a starred zero
in its column . We will always have one primed zero in its row. Keep
itterating until we reach the point where no primed zero has a
starred zero in its column .

18 while (done == 0) {
19 unsigned char rowEnd = 0;
20 for (i = 0; i < (SIZE); i++) {
21 if (mat[i][ path[count ][1]] == 1) {
22 count ++;
23 path[count ][0] = i;
24 path[count ][1] = path[count - 1][1];
25 mat[i][ path[count ][1]] = 0;
26 rowEnd = 1;
27 break;
28 }
29 }
30 if ( rowEnd == 0) {
31 done = 1;
32 }
33 if (done != 1) {
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34 for (i = 0; i < (SIZE); i++) {
35 if (mat[path[count ][0]][ i] == 2) {
36 count ++;
37 path[count ][0] = path[count - 1][0];
38 path[count ][1] = i;
39 mat[i][ path[count ][1]] = 0;
40 break;
41 }
42 }
43 }
44 }
45 count ++;
46 // Unmark all the marked zeros and mark all the primed zeros and remove

the primes .
47 for (i = 0; i < count; i++) {
48 if (M. marked [path[i ][0]][ path[i][1]] == 1) {
49 M. marked [path[i ][0]][ path[i][1]] = 0;
50 M. row_marked [path[i][0]] = 0;
51 } else {
52 if (M. marked [path[i ][0]][ path[i][1]] == 2) {
53 M. marked [path[i ][0]][ path[i][1]] = 1;
54 M. row_marked [path[i][0]] = 1;
55 }
56 }
57 }
58 // Uncover all rows and column and move to step 3
59 for (i = 0; i < (SIZE); i++) {
60 M. row_cover [i] = 0;
61 M. col_cover [i] = 0;
62 }
63 M.step = 3;
64 }

Listing 5.8: Mark additional zeros

5.2.9 Step 6: Create Additional Zeros

In Listing 5.9, to create additional zeros we check for the minimum value that is uncovered
and subtract it from all the uncovered elements, and add it to all the elements that are covered
twice and go back to step 4. Same as step 1 we have optimized minVal and data types in this
step. The complexity of this step is O(n2) because we are using nested for loops to iterate
over the matrix to create zeros, which is a three step procedure and cannot be combined in a
single nested loop.

1 Munkres step6( Munkres M) {
2 unsigned char i;
3 unsigned char j;
4 unsigned char minVal = SIZE +1;
5 // Find the smallest element that is not covered .
6 for (i = 0; i < (SIZE); i++) {
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7 for (j = 0; j < (SIZE); j++) {
8 if (M.C[i][j] < minVal && M. row_cover [i] != 1
9 && M. col_cover [j] != 1) {

10 minVal = M.C[i][j];
11 }
12 }
13 }
14 // Add the smallest elements to all the elements that are covered twice.
15 for (i = 0; i < (SIZE); i++) {
16 if (M. row_cover [i] == 1) {
17 for (j = 0; j < (SIZE); j++) {
18 M.C[i][j] = M.C[i][j] + minVal ;
19 }
20 }
21 }
22 // Subtract it from all the uncovered elements .
23 for (i = 0; i < (SIZE); i++) {
24 if (M. col_cover [i] != 1) {
25 for (j = 0; j < (SIZE); j++) {
26 M.C[j][i] = M.C[j][i] - minVal ;
27 }
28 }
29 }
30 // Go back to step 4.
31 M.step = 4;
32 }

Listing 5.9: Create additional zeros

5.2.10 Step 7: Display Optimal Solution

After having found the optimal solution in step 3, we proceed to the step shown in Listing 5.10.
We now save the indices of the assignments to map them to the original input matrix. After
this step, the assignments are returned as an output of the program. We have introduced
an attribute result which was not part of the original code, we assign the final values to this
array. The complexity of this step is O(n2) because of the nested for loops used to iterate
over the matrix and record indices of the selected priorities.

1 Munkres step7( Munkres M) {
2 // Save the selected values to the result variable .
3 unsigned char count =0;
4 for ( unsigned char i = 0; i < SIZE; i++) {
5 for ( unsigned char j = 0; j < (SIZE); j++) {
6 if (M. marked [i][j]==1) {
7 M. result [count ]=A[i][j];
8 count ++;
9 }

10 }
11 }
12 return M;
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13 }

Listing 5.10: Display Optimal Solution

5.2.11 Limitations

We faced some issues in implementing our problem in CBMC-GC. The first issue was with point-
ers; programmers heavily rely on pointers in C Language while the current version of CBMC-
GC has limited support for pointers. Also, for more extensive circuits, the compilation times
were quite large because of loop unrolling and the high complexity.

We solved these problems by generating scalable circuits which is explained in Section 5.2.12.
The complexity of this algorithm can be made better, i.e., O(n3) by implementing step 4
to step 6 together by using another algorithm. We do not build the augmenting path in a
single step, when the value is returned from step 6 we do not reset the partially completed
augmented path to keep track of the marked values. For instance, this can be implemented by
using maximum weight bipartite matching algorithm [Kuh10]. The matching M would take at
most n phases as it is increased by 1 in each phase of the algorithm. Every step other than M
would take O(n2) which would make the total running time to O(n3).

5.2.12 Generating Scalable Circuits

Generating huge circuits in CBMC - GC is still a problem and to overcome this we made
a utility that makes our system supported for larger number of participants. We generate
circuits separately for each step and convert them to Bristol format. In Bristol format, in the
first line of the circuit file, the number of gates and the number of wires are defined. In the
second line, there are two numbers n1 and n2 which define the number of wires in the inputs
to the function given by the circuit, the inputs are assumed to be two always but in case if
there is a single input then the size of the second input is set to zero. These numbers are
followed by n3 which define the number of wires in the output. The wires are ordered in
such a way that n1 wires correspond to the first input value, and n2 wires correspond to the
second input values while the n3 wires correspond to the output of the circuit. The gates are
then listed in the format having the number of input wires, the number of output wires, list
of input wires, list of output wires and the gate operation, e.g., 2 1 154 150 155 XOR [Til].
We then convert that Bristol circuit to ABY format. The first two lines contain the inputs bits
which are followed by the gate identifier input and output wires and the last line contains the
output bits. In this we convert the INV gates to XORs so the final circuit file has only AND,
XOR and OR gates.

We generate five circuit files because of the high complexity of step4 and also because we
need to run it n times due to the while loop, the first one contains step1 and step2, the second
one contains step3, the third has step4, the fourth contains step5 and step6 and the last deals
with the final assignments. We modified the code parts to optimize the process, and in the
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last step, we just return an array of the final assignments to reduce the number of gates being
used, unlike other steps where the whole object containing both matrices and the supporting
data is being returned. Once we have all files ready we move to the combining part. We
created a utility that combines different circuit files to one file in ABY format. Since each
step is dependent on the input from the previous step, we modified the code to initialize the
structure with values from the previous step.

We created another utility to combine these files. The utility reads two circuit files at a time.
The first circuit file is read and written in a new file, and its output bits are taken as the
input bits for the second circuit file. The input bits of the second circuit file is mapped 1-1
with the output bits of the first file. The second file is then read, and all the gates and wires
are added to the new file after being updated using the mapping that we made. If the wire
value does not exist in the mapping so the max bit value from the output of the first file is
added to the wire value and all values are then updated including the output bits and are
then written to the new file. This process drastically reduces the time to generate the circuits.
However, the sizes of these circuits would be much larger than the other optimized combined
circuits because of the redundant wires and the optimizations by CBMC - GC as described in
Section 2.6.4.

5.3 Secure Assignments

We use ABY described in Section 2.7 for the secure-computation part of our framework. We
use an example within ABY that is an adapter that can read a function represented as a
Boolean circuit. The involved parties then share the private input values for this function for
the secure-computation to be executed. For the evaluation, the parties use Boolean sharing
and Yao’s Protocol. First, we convert the Boolean circuit generated by CBMC - GC into bristol
format, which is a feature provided by CBMC - GC itself. We then use a utility to convert this
circuit to ABY format. The utility reads the bristol file and generates a graph with the circuit
gates and wires and then writes it to a different file in a topologically ordered manner in
that format. Once we have the circuit, we then use it in ABY to perform the computation
securely. For large circuits, we use the method explained in Section 5.2.12 to generate this
file.

The inputs are already with the computing parties, so they are used with the generated
circuits, and then the outputs are generated. We have created a utility that converts the inputs
to 8 bits. The input length is calculated from the Boolean circuit file, and then input vectors
are created based on that. We then read the inputs into a vector, the file of the respective
computing party is picked based on the role provided. We use role 0 for party A and 1 for
party B which can be called server and client in the ABY context. After reading the inputs, we
convert them to bit vector where all inputs are stored bitwise. We then use PutSIMDINGate
gates to load the inputs to the share and PutOUTGate is used to store the result of a share.
ExecCircuit() method is then executed to start the circuit evaluation. After the evaluation,
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results are then sent to party B (client) which are then converted from bit vectors to decimal
values.
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In this section, we present how the circuit scales concerning size and runtime both for
evaluation and generation. The runtime and communication time taken by circuits in ABY
using Yao’s GC protocol and the GMW protocol. Also, the difference between two of our
implementations of the circuits and how well they scale.

6.1 Benchmarking the Circuit Generation

Since XOR gates can be evaluated for free as described in Section 2.4.3.3, we focus on reducing
the number of AND gates used to lower the cost. We show how AND gates grow with the
change in size and also compare the more scalable circuit generation with the non-scalable
version.

6.1.1 Environment

The following measurements have been made on a machine with 16GB memory and Intel R⃝
CoreTM i5-4300U CPU @ 1.90GHz as the processor. We did five runs each for recording the
measurements.

6.1.2 Benchmarks for Circuit Size

Table 6.1 shows the increase in the number of AND gates with the increasing size of the
circuit. The graphical representation of the Table 6.1 is shown in Figure 6.1 where we can
see a growth in the number of AND gates for all five circuits with the increase in size of
the circuit. Circuit 3 grows more than the rest because of its high complexity O(n3) than
the rest of the circuits having complexity O(n2), and circuit 4 has a large number of gates
because we combined Step 5 and Step 6 of the algorithm in this circuit which has many
operations, so more gates are used in these steps which results in more significant circuit
sizes. The rest of the circuits have fewer operations and therefore require less number of
gates.
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Figure 6.1: The number of AND gates in the different circuits for varying number of partici-
pants and topics in the assignment problem

Size Circuit 1 Circuit 2 Circuit 3 Circuit 4 Circuit 5
3 370 597 17 967 23 892 490
4 698 1 388 81 280 75 788 1 181
5 1 084 2 780 261 625 183 170 2 363
6 1 588 4 902 743 568 375 024 4 410
7 2 189 7 959 1 814 414 688 807 7 202
8 2 940 12 064 3 985 120 1 167 368 10 623
9 4 324 18 225 8 068 365 1 934 586 15 026
10 4 606 26 450 15 366 070 2 938 300 20 401

Table 6.1: The number of AND gates in the circuits

Circuit 1 includes step 1 and 2 from the algorithm (Section 4.2) as described in Section 5.2.4
and Section 5.2.5, Circuit 2 contains step 3 which is described in Section 5.2.6, Circuit 3
contains step 4 which is described in Section 5.2.7, Circuit 4 contains step 5 and 6 as which
are described in Section 5.2.8 and Section 5.2.9 and Circuit 5 contains the step for final
assignment as described in Section 5.2.10.
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6.1.3 Benchmarks for Runtime

We first generated circuits directly, and as it was taking large amount of time, i.e., for n= 6
more than 14 hours to be generated, so we shifted to a scalable approach by generating
parts of circuits which speeded up the process. This can be seen in Figure 6.2 which shows
a comparison between circuit sizes and the time required to generate them. The total time
required to generate all circuits for size 10 is around 67 minutes which makes the scalable
version more than 12x faster. Since circuit 3 is the one with highest running time, we can
estimate the running time for bigger circuit size by looking at the current data. Generating
circuit 3 for size 11 and 12, takes 90 and 120 minutes respectively. Another thing to be
noticed here is the decrease in the runtime of circuit 1 for even sizes (6,8,10). Circuit 3
grows the most with respect to runtime because of the large number of gates involved and
the complexity of O(n3).The other circuits show similar characteristics as they all have same
asymptotic complexity O(n2).

Figure 6.2: Time taken to generate circuits
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6.1.4 Size Comparison

Figure 6.3 shows the comparison between our two implementations of the Hungarian al-
gorithm concerning the number of gates as descried in Section 5.2.12. We combine these
circuits in a way that the first circuit is combined with second circuit and then the resulting
circuit is combined with the next circuit. Since the steps 3− 6 (Section 4.2) run in a while
loop in the algorithm which runs up to n times making the total complexity of the algorithm
to O(n4), we need to combine circuit 2, 3 and 4 size times before being finally combined
with the last step circuit 5.

Figure 6.3: Comparison between Scalable and Non-scalable implementation

In Figure 6.3, the x-axis is the size of the circuit and on the y-axis are the number of AND
gates used by the circuit. As depicted in the graph in Figure 6.3, the non-scalable version
created smaller circuits because of the additional optimizations (Section 2.6.4) that run on the
whole circuit in CBMC -GC. The number of AND gates can be seen in Table 6.2 which shows
that the non-scalable circuits are up to 3 times smaller. However, generating these circuits
took longer time and we were not able to generate more because of the O(n4) complexity of
the algorithm. For the scalable version, the curve that we see shows y = Ax4 where A is a
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constant value by which the gates are increasing. The estimated value for A is 1420 with a
deviation of 25% which we have calculated from the data in Table 6.2.

Size 3 4 5 6 7 8 9 10
Scalable 43 316 160 335 451 022 1 129 492 2 520 571 5 178 115 10 040 526 18 355 827
Non-Scalable 14 275 46 422 164 594 430 568

Table 6.2: Number of AND gates in scalable and non-scalable version

6.2 Benchmarking the Secure Computation

We evaluate our circuits in ABY by using two different sharing mechanisms Boolean sharing
using GMW as described in Section 2.5 and Yao’s sharing using Yao’s garbled circuits as
described in Section 2.4. We take into consideration the two phases, the setup phase and the
online phase along with the total runtime information. In Yao’s GC, in the setup phase, the
server generates a garbled circuit and sends it to the client. In the online phase, the inputs
of the two parties are converted into corresponding garbled inputs and then sent from the
server to the client using OTs; the total runtime information contains all the phases including
function evaluation and decrypting the outputs. In GMW, the setup phase deals with the
generation of MTs via OTs, the online phase deals with the sharing of inputs, circuit evaluation
and combining the output shares, and the total runtime information contains the setup phase,
the online phase and the circuit construction (Section 2.5.2). The platform is the same as
described in Section 6.1.1 and we report the average time from 5 runs. In Figure 6.4, we
can see the communication numbers for sent and received data where we can see a constant
growth in the communication numbers which is because of the increasing input and circuit
size. Figure 6.5 shows the runtime in milliseconds which can be seen growing in all phases
for all circuit sizes. In Yao’s GC protocol, the communication in the setup phase includes the
garbled circuit, that is the reason for it being so high, and runtime also depends on the circuit
which is being encrypted. Also in the online phase, the runtime depends on the circuit that is
being evaluated.
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Figure 6.4: Communication using Yao’s GC

Figure 6.5: Time taken for secure computation using Yao’s GC
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Figure 6.6 shows the increase in communication numbers for the sizes. Figure 6.7 shows the
runtime of the circuits using Boolean sharing. We can see an increase in runtimes for all the
phases.

Figure 6.6: Communication using GMW
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Figure 6.7: Time taken for secure computation using GMW

The graphs depicted in Figure 6.5, Figure 6.7, Figure 6.4, and Figure 6.6 show that Yao’s shar-
ing had lesser runtime while Boolean sharing had lesser communication number. The reason
for this is the nature of Yao’s GC protocol because in Yao’s GC one party does most of the work
while in GMW the work is divided between both parties evenly. Also, in GMW each party can
compute their part of the result locally without communication effort.
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7 Conclusion

In this chapter we summarize our work and give an overview of our results and the possible
future work.

7.1 Summary

Privacy is a very popular topic these days, and we realized that there exists no system that
solves the assignment problem while preserving the privacy of the participants. To not rely
on any third party for such computations we designed a framework which can be used for
privacy-preserving assignments in any environment.

We created a frontend that was used to collect inputs from users in an encrypted manner
so that the inputs are never available in plain and can never be guessed by anyone. We
used secret sharing along with encryption to store the input and share parts of it with the
computing parties. We then use CBMC -GC to convert our implementation of the Hungarian
algorithm to Boolean circuits which can then be used for secure computation in ABY. We used
ABY to compute the output securely.

Our implementation shows expected results which means that almost everything is increasing
concerning the size of the circuit. However, our implementation of the algorithm has a
complexity of O(n4) which can be further reduced to O(n3) which would speed up the
process of scalable circuit generation and would also reduce the overall circuit size. This
would also affect the runtime and communication numbers in ABY.

7.2 Future Work

There can be several extensions to be done in this thesis. One of which is implementing the
Hungarian Algorithm [Kuh10] in O(n3) time which will further reduce the time and circuit
size which will be a huge optimization and would be directly compatible with our framework
as explained in Section 5.2.11. This framework can also be made compatible with other
assignment problems by following the same or different techniques. Also, similar problems
can be identified, and the same approach can be used to construct another privacy-preserving
framework. One interesting extension would be to have an option to select the algorithm on
runtime depending on the problem and size.
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