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Abstract

While a lot of effort has already been put into securing the contents of messages transmitted
over our digital infrastructure, protection of metadata is mostly ignored because of the lack
of available technologies that can be used to secure this valuable part of our communication.
Scalable mechanisms to protect the anonymity of the users and hide their social graph are in
great demand.

This bachelor’s thesis introduces and evaluates two significant improvements in private
information retrieval – an active field of research that allows private querying of data from
a database without revealing which data has been requested and a fundamental building
block for private communication networks –, summarizes past efforts that have been put
into building such networks and proposes OnionPIR, a novel private messaging service built
upon efficient information-theoretic PIR and onion routing. A prototype has been built to
substantiate the claim that OnionPIR is usable in practice.

On the basis of the results of this research, it can be concluded that it would be possible to
build and deploy such a service today. OnionPIR describes a way to operate the system by
combining highly efficient PIR mechanisms and nearly zero-cost onion routing. Its server
operating expenses are within the order of magnitude of those of traditional messaging
services.
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1 Introduction

1.1 Motivation

Communication has never been more important for our society than it is today. Large parts
of our logistic infrastructure depend on digital computer networks and would collapse when
online communication suddenly were not possible anymore.

With the rise of instant messengers and the high availability of mobile devices, communication
shifted more and more from the offline world to online communication platforms. These
conversations can be and nowadays often are secured by end-to-end encryption. But even if the
content of exchanged messages cannot be read by an adversary, these digital platforms produce
large amounts of metadata. Electronic mass surveillance programs strengthen the need for
systems providing communication channels without leaking metadata which has shown to be
of tremendous value [Lan15; MMM16]. E.g. for people living in suppressive regimes just
getting in contact with government-critical organizations can be a huge risk. The right to
remain anonymous is a fundamental right in our modern democracy.

Privacy of correspondence is one of the most important principles of our analog postal system.
By design, it is difficult if not practically impossible to hide the connection between a sender
and a receiver in our physical world. In contrast, digital communication networks offer more
advanced techniques to ensure anonymity. Developing such systems that scale to a large
number of users is a very promising research field. Private information retrieval (PIR) can
be used as a building block for those solutions and also offers many possibilities for further
applications, e.g. private querying of articles from an online encyclopedia such as Wikipedia1,
enabling location privacy for services like OpenStreetMap2 or improving the scalability of Tor,
as proposed in PIR-Tor [MOT+11].

Moreover, building blocks of private and untraceable communication services could potentially
also be reused in other privacy-critical applications that are currently under active research,
such as electronic voting systems [BV14; Neu16] or privacy-preserving location-based services
[MCA06; HCE11; DSZ14].

1https://www.wikipedia.org/
2https://www.openstreetmap.org/
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1 Introduction

1.2 Contributions

We implemented two extensive optimizations in the field of Private Information Retrieval
PIR that lead to significant significant performance improvements. Our work is based on
the existing RAID-PIR library [DHS14] by Demmler, Herzberg and Schneider. The first
enhancement focuses on reducing the computation time of the servers required to build
responses for PIR queries while the second one targets the process of querying multiple
database entries within one PIR query by adjusting the database layout to increase the
number of entries that can be queried in parallel.

Based on the efficient implementation of PIR, we propose OnionPIR – a novel anonymous
communication network that combines PIR with onion routing to create a scalable way to
privately distribute messages. OnionPIR was designed to be ready for widespread deploy-
ment and provides a way to establish a secure communication channel without the need of
exchanging any type of cryptographic keys out-of-band. A proof-of-concept implementation
has been created to demonstrate the practicability of the system.

1.3 Outline

In §2 the fundamental concepts of Private Information Retrieval are summarized. Server-side
computation requirements are lowered in §2.1 and the throughput of database entries per
queries is increased in §2.2. An experimental evaluation is given in §2.3. Next, an overview of
existing private communication networks is given in §3.2. A highlevel overview of OnionPIR is
given in §3.3 and explicated in §3.4. Security considerations are explained in §3.5. An analysis
of the scalability properties of OnionPIR is given in §3.6.1. Correctness is defended in §3.6.2.
Chapter §4 concludes this thesis and gives an outlook to future work.
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2 Performance improvements in RAID-PIR

Private information retrieval (PIR) is a very active research topic in the field of Privacy
Enhancing Technologies (PETs). PIR can be used to receive information from one or multiple
servers without disclosing which information were requested. Since this technique is a
fundamental building block for higher-level protocols and applications, its performance is
of prime importance. In this chapter, the performance of the RAID-PIR library is further
improved.

Introduction

RAID-PIR, introduced in [DHS14] by Demmler, Herzberg and Schneider, is an information-
theoretic PIR (IT-PIR) scheme based on the original design by Chor et al. [CKGS95].
Information-theoretic PIR schemes are secure even if the adversary has unlimited computation
power. They typically rely on a non-collusion assumption between multiple servers.

The first computational PIR scheme was introduced by Chor, Gilboa and Naor in [CGN97] and
was soon followed by another approach by Kushilevitz and Ostrovsky [KO97]. Computational
PIR (cPIR) schemes are an alternative approach to private querying of data and are usually
based on partially homomorphic encryption to provide strong security guarantees in a single-
server setup. Their security is based on the limited computational power of the adversary. A
recent realization using lattice-based cryptography is presented and evaluated by Aguilar-
Melchor, Barrier, Fousse and Killijian in [ABFK16].

Both approaches, IT-PIR and cPIR, are combined by Devet and Goldberg in [DG14]. This
design was called Hybrid PIR. Single-server cPIR protocols can be applied recursively by
selecting a chunk of the database in one step of the recursion, storing an encrypted version
of the selected chunk at the PIR server and using this chunk as the new database in the next
step. By making use of the partially homomorphic encryption, this can be done without
revealing which chunks were selected. In Hybrid PIR, the first step of the recursion is
done using the IT-PIR protocol and all subsequent steps are performed via cPIR. Though
this design weakens the security of the protocol by relying on the security assumptions of
both IT-PIR and cPIR, partial security is preserved in case one of the two assumptions is
broken.

In the original approach by Chor et al. [CKGS95], a multi-server setup together with a non-
collusion assumption of the servers offers great performance and strong security-guarantees

3



2 Performance improvements in RAID-PIR

by making use of fast XOR operations instead of homomorphic encryption. The database
containing the data that may be queried by clients is thereto divided into B blocks of b bits
size and distributed to k servers. When a client wants to query the n-th block from the
database, it generates k− 1 random bitstrings, called queries, of length b and constructs the
k-th bitstring in a way that the XOR of all k queries results in a bitstring where all bits except
the n-th are zero. Each of the k queries, as depicted in Figure 2.1, is then sent to a different
server which will XOR all blocks whose corresponding bit i is set in the query and return the
resulting block of length b bit. When all received blocks are then XORed together, the n-th
block is recovered because all blocks of the database except the n-th block were involved an
even number of times in the server-side XOR operations.

11010 01010 11101 01001
10110 01101 10101 00111
01100 10001 01110 10110
00100 10110 00110 11000

00100 00000 00000 00000

q1
q2
q3
q4
e3

Figure 2.1: Querying data in RAID-PIR. The four queries qi that are sent to the k = 4 servers
consist of one (orange) flip chunk and three (black) randomly generated chunks
so that the XOR of all queries is equivalent to the plain text query e3.

RAID-PIR improves this scheme by splitting each query into k chunks. The queries are
then constructed in a way that all chunks sent to the l-th server except the l-th chunk are
generated using a pseudo random generator PRG. In addition, a redundancy parameter r
is introduced to reduce the downstream bandwidth and server-side computational costs.
For that matter, each server will only handle r chunks of the database. This also reduces
the number of servers that have to collude in order to retrieve the plain text query of the
client. Instead of k servers, r colluding servers are now sufficient to break the non-collusion
assumption. Another optimization provides the ability to request multiple blocks of the
database within a single query. This is achieved by XORing the requested blocks per chunk at
the server side and returning one block per chunk instead of one block per query. However,
this optimization has the limitation that the requested blocks have to be in different chunks
of the database.

In this chapter, two additional improvements to those presented in [DHS14] are introduced
to speedup RAID-PIR even further. The first one improves the generation of the PIR re-
sponses at the server-side and the second one achieves a significant speedup by using an
advanced database layout where data entries are uniformly distributed among the whole
data storage.
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2 Performance improvements in RAID-PIR

2.1 Method of Four Russians

The Method of Four Russians [ADKF70], also known as the Kronrod’s method, is a technique
for efficient multiplication of matrices with a limited number of possible values per cell. Since
RAID-PIR makes heavy usage of such kinds of multiplications, the Method of Four Russians
can be used to further reduce the computation time of the RAID-PIR mirrors required while
generating the response for a PIR query. This improvement results in lower latency and
higher throughput of the system and comes at the (low) cost of a new preprocessing phase
for the mirrors and slightly increased memory requirements as shown in §2.3. A related
approach for information-theoretic PIR schemes based on secret sharing is presented in
[Hen16].

The Method of Four Russians bases on the assumption that the number of possible values
for the cells of a matrix is finite. Here, it is assumed that all matrices in the multiplication
A ∗B = C are done over the field with two elements (F2), i.e. only binary matrices are being
multiplied. Note, that this limitation is not needed for applicability of the algorithm (e.g.
its correctness property would also be fulfilled for F10) but it reduces the complexity of the
algorithm and is sufficient for our use case. In F2, the multiplicative operation is AND and
the additive operation is XOR.

The first interesting phenomenon, that is crucial to understand the idea behind the Four
Russians algorithm, is that the indices of the non-zero elements of a row r in the first matrix
A indicate a subset of rows in the second matrix B that have to be XORed in order to produce
the r-th row of the output matrix C. As a naïve approach, it would now be possible to
precompute all possible XOR combinations of the rows of B and hereby create a lookup
table that returns the final results for the rows of C that correspond to the rows of A. In
other words, a lookup could be performed for each row in A returning row r in C that
would also be computed by building the XOR of the rows in B indicated by row r in A. This
would reduce the computational complexity from O(n3) to O(n) assuming the lookup is
done in constant time and all matrices are of size n× n. Unfortunately, this naïve approach
is inapplicable in practice due to the computational complexity for the precomputation
(O(2n · n)). For each of the 2n rows in the matrix B, n one-bit XOR operations have to be
performed. Thus, for n> 4 the traditional matrix multiplication (O(n3)) would be faster than
this approach.

The reason why only n one-bit XOR operations have to be performed for each of the 2n possible
combinations of rows of the matrix B is, that it is possible to use a Gray code to reorder the
possible combinations in a way that two consecutive combinations only differ by one row of B.
For each of the 2n combinations, it is now sufficient to XOR the result of the last precomputed
result with the row of B that changed, according to the Gray code. The Gray code g of a binary
number m can be calculated as g = (m⊕ (m� 1)). A sample lookup table illustrating the
efficient calculation of the lookup table entries is given in Table 2.1.

5



2 Performance improvements in RAID-PIR

B∗ =







0 1 1 1
1 1 0 0
1 0 0 1
1 0 1 1







Gray code decimal result

0000 0 0000 = B∗[0, :]
0001 1 1011 = 0000⊕B∗[3, :]
0011 3 0010 = 1011⊕B∗[2, :]
0010 2 1001 = 0010⊕B∗[3, :]
0110 6 0101 = 1001⊕B∗[1, :]
0111 7 1110 = 0101⊕B∗[3, :]
0101 5 0111 = 1110⊕B∗[2, :]
0100 4 1100 = 0111⊕B∗[3, :]
1100 12 1011 = 1100⊕B∗[0, :]
... ... ...

Table 2.1: Example lookup table for the sample matrix B∗

Besides these huge computational costs, there also are tremendous memory requirements to
store the lookup table (2B times the memory needed to store one row of B, where B is the num-
ber of rows of B). Obviously, this naïve approach is not practicable.

Instead, the matrix B is divided into groups of t rows each. The precomputation is then done
within these B/t groups using the Gray code as described above resulting in a computational
complexity of O(2t · n2/t). When t is chosen to be t = log2(n) the computational complexity
simplifies to O(n3/log2(n)) resulting in a speedup of log2(n) compared to the traditional
matrix multiplication.

While the matrix B is divided into groups horizontally, the matrix A has to be divided into
vertical groups of t columns. To multiply the two n× n matrices, A is now traversed column-
wise - grouped by t columns forming a group each. For each group, the corresponding lookup
table can now be created by t rows of B and a lookup can be performed for all t-bit subparts
of the n rows of A in this group. This procedure is depicted in Figure 2.2. Note, that the
lookup tables are no longer of any use when the corresponding groups were processed making
it possible to reuse the allocated memory for the next lookup table.

Implementation

An efficient multiplication of the Method of Four Russians is provided by Albrecht, Bard
and Hart in [ABH10]. However, since the existing implementations only implement full
matrix-matrix multiplications and do not suit the data structures provided by RAID-PIR, none

6
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} t

} B/t

0000  00000...
0001  11010...
0011  00110...
0010  11100...
0110  10011...
0111  01001...
0101  10101...
0100  01111...
...

}2t

110100101011010101010101001010101...
111000101011010101010101001010101...
011110101011010101010101001010101...
001010101011010101010101001010101...

PIR database

group 3

group 4

group 2

Lookup table
for group 1

0
1
1
0

...

qu
er

y 
ve

ct
or

Figure 2.2: Precomputation in the PIR database. A query vector is one row in the matrix A.
The first four bits of the query vector represent the index in the lookup table for
the first group of B (the PIR database).

of these were used. Instead, the idea behind the Four Russians multiplication was adopted
to create a new implementation directly integrated into RAID-PIR to avoid costly memory
movements and exploit memory locality.

While the traditional Method of Four Russians assumes two full matrices to be multiplied,
this is not the case in RAID-PIR. Often, only a single PIR request has to be answered. For
this vector-matrix-multiplication, the improvements introduced by doing the precomputation
do not apply. Caching several PIR requests would solve this issue. However, the amount of
cached requests would have to be in the order of magnitude of the number of entries of the
matrix B, i.e. our PIR database. Therefore, a slightly adapted version of the original Four
Russians multiplication that fits well together with the requirements of the RAID-PIR library
was implemented.

Instead of caching the PIR requests, the lookup tables for all groups are being cached. Even
for a single PIR request, these lookup tables can now be used to gain a theoretical speedup of
t while building the response vector. This exactly matches our scenario and is possible due to
the fact that B can be preprocessed in the absence of any PIR request.

The downside of holding all lookup tables in memory are the increased memory requirements.
While a larger t decreases the computation time for the generation of the response vectors,
it also excessively increases the memory needed to store the lookup tables. When t of B
entries of the PIR database are clustered in a group, only B/t XOR operations have to be
performed per query resulting in a speedup of t. On the other side, each of the B/t lookup
tables requires 2t × b bits of memory where b is the length of a database entry. A comparison
of the theoretical speedup compared to the corresponding memory requirements is given in
Table 2.2. The choice of t = 4 gives a good trade-off between the computational benefits and
memory costs for larger databases.

7



2 Performance improvements in RAID-PIR

t (speedup) 1
t · 2

t (memory requirements)

2 2.00
3 2.66
4 4.00
5 6.40
6 10.67
7 18.29
8 32.00

Table 2.2: Comparison of speedup and memory requirements for the adapted version of the
Method of Four Russians

The optimizations were implemented in C and integrated into the existing RAID-PIR library.
Since the PIR clients do not have to be aware of the changes to the calculation of the XOR
responses, only the mirror servers of the implementation were affected by this optional
precomputation. Note that two different server operators running a mirror server could
decide independently whether they enable the precomputation or not.

In [LG15] another approach to speedup server computation time based on Strassen’s algorithm
for matrix multiplication was introduced by Lueks and Goldberg. However, this approach is
only efficient if the number of PIR requests is a power of 2 and does not really fit into the
RAID-PIR approach where the block size is typically relatively large and queries are mainly
processed iteratively.

2.2 Uniform Distribution of the Data Entries

In the current design of RAID-PIR, the files to distribute via PIR are simply concatenated
to build the PIR database. Thus, a larger file will be placed in consecutive database blocks.
While this does not imply the performance of a query when retrieving the blocks consecutively,
querying multiple blocks in parallel is often not possible.

RAID-PIR introduced so called “multi-block queries” (MB) enabling a client to request more
than one PIR block in a single query to the mirror servers. The improvements of RAID-PIR
compared to the original CKGS scheme [CKGS95] base on the fact that the PIR blocks are
grouped into k chunks that divide the database into equally sized parts. Mirror servers
receiving a multi-block query will reply with one block per query chunk. Within these
chunks the XOR of the corresponding blocks is calculated as before. Since only one block per
chunk can be queried in one multi-block query, the blocks to retrieve have to be located in
different chunks. The performance analysis of RAID-PIR proved that no speedup could be
achieved for a large consecutive file residing in a single chunk. However, a large speedup
could be measured when querying 10 small files that were uniformly distributed among the
database.

8



2 Performance improvements in RAID-PIR

Implementation

As shown in [DHS14], the improvements introduced by the multi-block queries only apply
for multiple files located in different chunks of the database. To improve the performance
for multi-block queries for a single large file, the layout of the database has to be improved.
Instead of placing files in consecutive blocks, they are now uniformly distributed within the
whole database, as shown in Figure 2.3. For each file, the number of blocks n needed to store
its contents is calculated and the file is then placed in a way that between two blocks that are
assigned to the file B/n−1 blocks are used for other files, where B is the number of blocks in
the database. If a chosen block is already assigned to another file, the next free block of the
database is used instead. The first bytes of the next file will then fill the rest of the previous
file’s last block. Furthermore, it is guaranteed that all B blocks of the database contain data
and no block except the last one is only partially filled.

1
2
3
4
1
1
2
3
4
5
1
2

1
2
1
2
3
2
3
4
5
4
1
1

ch
un

k 
2

ch
un

k 
3

ch
un

k 
1

Figure 2.3: Uniform distribution of the data entries in the PIR database. While the first file
(green) filled up only the first chunk in the original database layout (left), it is
now uniformly distributed over the whole database (right).

These optimizations were integrated in the existing RAID-PIR library. Since both the mir-
ror servers and the clients have to be aware of the new locations of the database en-
tries, both client-side and server-side code was extended to support the new database
layout.

2.3 Benchmark Results

In this section, the improvements introduced by the Method of Four Russians and the
uniform distribution of the data entries in the database are presented and further elab-
orated.

The benchmarks are based on the implementation of RAID-PIR [DHS14] that was modified
to support the improvements described in §2.1 and §2.2. In the test scenario, three mirror
servers were deployed as r3.xlarge instances on Amazon EC2 with 30.5 GiB main memory,
an Intel Xeon E5-2670 v2 processor and a 1 Gbit/s ethernet connection. The PIR queries
were performed by a t2.micro instance with 1 GiB main memory, one core of an Intel Xeon
E5-2676 v3 processor and a 250 Mbit/s ethernet connection (0.5ms latency) in the WAN
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2 Performance improvements in RAID-PIR

setup and a notebook with 8 GiB main memory, an Intel Core i3-3120M processor and a
consumer grade internet connection (4.5 Mbit/s downstream, 400 Kbit/s upstream, 30ms
latency) in the DSL setup. The database used in both scenarios consists of 964 files of Ubuntu
security updates adding up to a total size of 3.8 GB. The average file size is 4 MB and the
median file size is only 267 kB due to a large number of small patches. All experiments were
run five times and the average runtimes are given in the figures below.

16 64 256 1024 4096
3

5

10

20

30

45

blocksize b [kB]

ru
nt

im
e
[s

ec
]

total
precomputation

Figure 2.4: Startup duration for the PIR mirrors

Figure 2.4 shows the mirror startup duration of the PIR mirrors. This time includes the time
needed to read the database from disk, store it into main memory and precompute the lookup
tables introduced by the Method of Four Russians. The figure shows that the startup time
does not heavily depend on the block size and the precomputation time is negligible even for
larger databases. For a group size of t = 4, only 4 · B XOR operations have to be performed
during the precomputation phase where B is the total number of blocks in the database. Note,
that in contrast to the generation of a PIR responses, data has to be written to main memory
while the lookup tables are generated. This results in a much slower precomputation than
the generation of 4 single-block responses – even if the same amount of XOR operations have
to be performed.

Next, the number of servers is set to k = 3 and the redundancy parameter is set to r = 2. The
block size is varied from b = 16 kB to b = 4 MB depicted on the x-axis and the total runtime
is depicted on the y-axis. In Figure 2.5, one large 8.5 MB file is requested using various PIR
schemes in the WAN setup. Single-block queries are abbreviated as SB, multi-block queries
as MB, the Method of Four Russians as 4R and the uniform distribution of the data entries
as UD. The graphs for the single-block uniform distribution and the single-block uniform
distribution with precomputation are identical to their respective versions not including the
uniform distribution and were therefore omitted. This is not surprising since the uniform
distribution was introduced to speedup the performance of multi-block queries and has no
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16 64 256 1024 4096
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Figure 2.5: Runtimes for varying block sizes b with k = 3 servers and redundancy parameter
r = 2 and one large file (8.5 MB, WAN setup). CKGS: original PIR scheme
[CKGS95], SB: Single-Block scheme, MB: Multi-Block scheme, 4R: Four Russians
Precomputation, UD: Uniform distribution of the data entries.

impact in multiple consecutive queries where the location of the requested block does not
matter.

As already observed in [DHS14], single-block and multi-block queries take roughly the
same time when querying one large file in the WAN setup, where bandwidth and latency
typically are not the bottleneck. For large block sizes in the non-uniformly distributed
database, single-block queries profit from the lower amount of irrelevant data processed
by the mirrors and transferred to the client compared to the multi-block queries. The Four
Russians precomputation leads to a significant speedup and effectively halves the runtime of
most test cases. This is a good result even if the theoretical speedup, that does not cover data
locality issues, is 4. When the cache size of the CPU is not sufficient to store the precomputed
lookup tables and all interim results for large block sizes, the Method of Four Russians’
speedup decreases and is not measurable for b = 4 MB any more.

The speedup gained by uniformly distributing the data entries in the database is even greater
and improves the overall runtime by a factor of 3 compared to the original multi-block
queries for small block sizes. While all blocks have to be queried from the first chunk for a
non-uniformly distributed database, it is now possible to retrieve 3 blocks from 3 different
chunks in one multi-block query in parallel. When both optimizations are combined, the
runtime decreases from 64 seconds (or 100 seconds for the original CKGS scheme) to 10
seconds for a block size of b = 16 kB and reaches its minimum for b = 1 MB where the
runtime decreases from 1.9 seconds for the originally best performing single-block queries to
0.9 seconds for multi-block queries using both optimizations.
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Figure 2.6: Runtimes for varying block sizes b with k = 3 servers and redundancy parameter
r = 2 and 10 small files (2.9 MB, WAN setup). CKGS: original PIR scheme
[CKGS95], SB: Single-Block scheme, MB: Multi-Block scheme, 4R: Four Russians
Precomputation, UD: Uniform distribution of the data entries.

The results for querying 10 small files adding up to 2.9 MB are depicted in Figure 2.6. Here,
the multi-block queries are significantly faster than the single-block queries even when no
optimizations are applied since the files being requested are already distributed among the
whole database. Therefore, uniform distribution of the data entries does not have a significant
impact on the overall performance. Again, the Four Russians precomputation halves the
runtimes of the test cases and does not introduce improvements any more when the cache
size of the processor is not sufficient for larger block sizes. For a block size of b = 16 kB, the
runtime decreases from 10.1 seconds for the originally best performing multi-block queries
to 4.1 seconds when all optimizations are applied. The best performance is obtained for
a block size of b = 256 kB where 7 queries are performed to retrieve 18 blocks in 0.8
seconds.

In Figure 2.7, the results for querying the one large file (8.5 MB as in the first test case) over
the consumer-grade DSL connection are depicted. The first interesting observation is that
the results for single- and multi-block queries with a block size of b = 16 kB do not differ
significantly. The reason for this is the low upstream bandwidth of the DSL connection. For
small block sizes, the upstream bandwidth, which depends on the number of blocks, has a
larger impact than the downstream bandwidth, which depends on the block size. To perform
a query to a database containing 246 360 blocks of 16 kB each, 246 360/3 bit have to be
transferred to each server (plus additional 16 Bytes for the PRG seeds) resulting in a total
transmission time of 3 · (246 360/3 bit+ 16 Byte)/(400 kbit/s)≈ 602 ms. This phenomenon
can also be observed in the benchmarks run in [DHS14].
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Figure 2.7: Runtimes for varying block sizes b with k = 3 servers and redundancy param-
eter r = 2 and one large file (8.5 MB, DSL setup). CKGS: original PIR scheme
[CKGS95], SB: Single-Block scheme, MB: Multi-Block scheme, 4R: Four Russians
Precomputation, UD: Uniform distribution of the data entries.

Due to this high latency and communication overhead of the queries, the Four Russians
precomputation has a significant impact in this scenario. As in the first test case, without the
uniform distribution, single-block queries provide better performance than multi-block queries.
However, when the data entries are distributed uniformly, a significant speedup to multi-block
queries is introduced and – as already expected – the multi-block queries supersede the
single-block approach because the number of requests reduces by about a third. It was also
shown that larger block sizes have the disadvantage that large parts of some requested blocks
contain no relevant data and therefore lead to a slower runtime.

For a redundancy parameter of r = 2, the data that needs to be sent to the client is about
twice the size of the raw data. The best results are achieved for a block size of 1 MB in the
uniformly distributed database using the multi-block queries. Retrieving the file without any
PIR mechanisms1 takes 16.9 seconds and is only faster by a factor of 2.10, indicating that the
runtime of 35.5 seconds for the private information retrieval approach almost reached the
theoretically optimal results for the DSL setup.

1using wget over an unencrypted HTTP connection
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The improvements in RAID-PIR automatically result in a better performance of all systems
using this PIR library as a building block. In this chapter, a private communication sys-
tem is introduced that makes use of private information retrieval to bootstrap anonymous
communication.

3.1 Motivation

When two parties register under pseudonymous identities and connect to each other simply
by using Tor [DMS04], a malicious server can link those two identities together. Even if these
pseudonyms do not reveal any information about the users behind them, it is possible to
build a social graph isomorphic to the one built with information from other sources. These
two graphs can then be mapped together and thus reveal information about the users behind
the pseudonyms. Therefore, more advanced techniques are needed to provide protection
against leaking of metadata. Additionally, it has turned out that the illusion of users willing to
exchange a shared secret is not realistic. In order to provide protection against mass surveil-
lance, a system to establish private communication channels based on already existing contact
information such as phone numbers or email addresses is needed.

3.2 RelatedWork

In our daily communication, end-to-end encryption is available and ready for widespread
deployment. In the past, these technologies were not accessible to a large number of users
because they often required knowledge of public key cryptography or were just not as easy-
to-use as other messaging applications. End-to-end encryption was only used by computer
specialists and a relatively small group of people who really saw a need to protect their
communication. For example, users of OpenPGP1 have to manually build a web-of-trust
and should be familiar with the concept of public key cryptography and S/MIME2 requires
certificate management. When the Signal Protocol got integrated into popular messaging

1https://tools.ietf.org/html/rfc4880
2https://tools.ietf.org/html/rfc2633
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3 OnionPIR

services like WhatsApp3 or Facebook Messenger4 earlier this year, private messaging suddenly
became available to a extremely large user base.

However, creating platforms that protect not only the content of the communication but
also its metadata is still under active research. A couple of concurring techniques to build
communication networks that avoid to leak metadata have been presented in the last years and
will be compared in this section. Private Set Intersection [Mea86; PSZ14; PSSZ15], Private
Function Evaluation [Yao82; KS08; KS16] and Oblivious RAM [WHC+14; LWN+15] are
similar fields of research that could possibly also be conducive building blocks of anonymous
communication networks in future research.

Not all protocols summarized in this section provide confidentiality. However, since this is
an already solved problem, confidentiality could be added on top of all of the presented
protocols requiring only some minor changes.

3.2.1 Redphone

One of the first applications that used privacy preserving technology to prevent leaking of
metadata was Redphone by Open Whisper Systems5. In Redphone, bloom filters [Blo70]
were used for private contact discovery. However, Redphone did not include any mechanisms
to protect metadata when an actual call was initiated.

When the encrypted voice call feature Redphone provided got integrated into the more
popular messaging app Textsecure (which was later renamed to Signal), the authors claimed
that bloom filters would not have been able to handle the larger user base and had to be
removed6.

3.2.2 DP5

The Dagstuhl Privacy Preserving Presence Protocol7 (DP5) described in [BDG14] by Borisov,
Danezis and Goldberg provides a mechanism to exchange online presence information in a
privacy preserving way by making use of PIR schemes. The goal of the protocol is to distribute
these status information while the server is not able to read the associated data, learn who is
online or link two participants of the protocol.

In DP5, the concept of epochs is used to describe successive time slots in which a client A
can register their presence status at the server. In the subsequent epoch, another user is then
able to query the presence information stored in the previous epoch privately using a PIR
mechanism. The stored data is encrypted using Authenticated Encryption with Associated

3https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
4https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
5https://whispersystems.org/
6https://whispersystems.org/blog/contact-discovery/
7According to the authors, the extra ’P’ is for extra privacy.
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Data (AEAD) with a key K j and stored under an identifier I Dj for the current epoch T j . The
key K j and the identifier I Dj are both derived from a cryptographically strong symmetric
key KAB shared between the users A and B of the service. This guarantees that the server is
not able to read the data or associate it with a specific user. The presence status can then be
queried in the epoch T j+1 using private information retrieval by the user B who is able to
derive the identifier from the pre-shared key KAB and decrypt it using the shared key K j also
derived from KAB j

.

However, this simple approach does not scale for many users because each user has to store
its presence status n f times, where n f is the number of friends of the user. Therefore, instead
of using only one epoch, a long-term epoch and a short-term epoch are used. The former one
works as described above, but instead of storing the presence status directly, a single public
key pkA j

of the user A is stored and received by all n f friends of A individually. This public key
is then used in the short-term epoch t j to derive an identifier for the record of A and query
the presence information encrypted by a key also derived from pkA j

. Since the public key
pkA j

of A is still distributed in an encrypted way in the long-term epoch, only the friends of A
that received the public key are able to decrypt the presence status in the short-term epoch.
In contrast to the simple approach, each user has to store its presence information only once
(instead of n f times) in each short-term epoch t j . This way the general performance in terms
of scalability of the protocol can be drastically improved.

As described in [BDG14], the updates in the long-term epoch are done in the order of a
day while the updates in the short-term epoch are done in the order of magnitude of min-
utes. This makes DP5 a good choice for exchanging presence information, but also makes
it unusable for messaging or real-time communication like voice or video calls. However,
it is possible to use the information exchanged via DP5 to build more complex secure pro-
tocols on top of it. A big drawback of DP5 is that it assumes a cryptographically strong
symmetric secrets to be shared between two communication partners as a prerequisite for
the protocol.

3.2.3 Alpenhorn

Alpenhorn [LZ16] is a recent approach by Lazar and Zeldovich to bootstrap secure com-
munication without leaking metadata. It was first introduced at the Privacy Enhancing
Technologies Symposium 2016 and uses identity-based encryption (IBE) [BF01] and a mix
network [CJK+16; Cha81] instead of private information retrieval to provide strong privacy
guarantees.

The idea of identity-based encryption was first proposed by Adi Shamir in 1984 [Sha84] but
remained an unsolved problem until 2001 when the pairing-based Boneh-Franklin scheme
[BF01], which is used in Alpenhorn, and Cocks’s encryption scheme [Coc01] based on
quadratic residues were introduced. The idea of IBE is to distribute key pairs of a public-key
encryption scheme in a way that it is possible to derive the public key of a mathematical
function over some publicly known parameters and a unique identifier (such as an email
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address) of the user. The secret key can then be obtained from a central authority which first
requires the user to prove the ownership of the email address.

Obviously this concept relying on a central authority that is able to generate the secret
keys for all users is undesirable. Alpenhorn solves this issue by using the exchanged keys
only to exchange a shared secret between two participants of the protocol. Additionally, an
anytrust thread model is used to ensure that only a single of multiple IBE servers has to
be honest to protect the privacy of the metadata. Nevertheless, the design of the system
does not provide a method to detect malicious actions by the servers – a server could give
out the private key of any user to a third party without the users ever getting aware of this
action.

Compared to a key exchange mechanism using a traditional public key infrastructure (PKI),
this allows users to retrieve public keys in a secure way while no prior out-of-band communi-
cation is required at all.

When a user A wants to initiate a private communication channel with another user B of
the Alpenhorn system, she first encrypts a secret with the identifier of B as a public key.
This encrypted secret is then routed through a mix network to a mailbox identified by the
username of B. The anytrust model used for the IBE servers is also used for the mixnet servers.
When the user B retrieves the encrypted secret from the mailbox, he is able to decrypt it
using the private key obtained by the central IBE authority. The secret then becomes a shared
secret and is stored in the address books of both A and B.

To ensure forward secrecy, a new keywheel construct is introduced. This keywheel construct
continuously evolves the pairwise shared secrets and also ensures that, at any given point in
time, the same secrets are available on both end systems. This guarantees that an adversary
who later compromises an end system still is not able to learn anything about communication
channels initiated in the past.

Alpenhorn was integrated in the Vuvuzela private messaging system introduced in [HLZZ15]
which aims to provide a scalable way to communicate privately without leaking any metadata.
It was shown that Alpenhorn supports 10 million users using three Alpenhorn servers with an
average dial latency of 150 seconds and a client bandwidth overhead of 3.7 KB/s.

3.2.4 Riposte

Riposte [CBM15] is an anonymous messaging system by Corrigan-Gibbs, Boneh and Mazières
designed to handle a large number of users privately posting public messages to a public
bulletin board. Its privacy guarantees include that it is not possible for an adversary to
determine who posted which message making the system a perfect choice for latency-tolerant
anonymous surveys or anonymous microblogging services where the number of readers is
considerably smaller than the number of writers. By combining the presented techniques
with public key encryption, Riposte could be used to build point-to-point private messaging
channels.
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In Riposte, time is divided into epochs and a database is used to store all messages posted by
the users. This database is divided into a fixed number of rows and gets initialized with zeros
at the beginning of each epoch by each of the n servers. When one user of a fixed set of users,
called anonymity set, wants to privately write a message to the l-th row of the database, it first
splits its write request into n shares by using a distributed point function (DPF) [GI14]. The
shares are created in a way that the XOR of all shares results in a vector where the l-th entry
contains the message to be stored in the database and all other entries are zero. However,
due to the characteristics of the distributed point function it is not possible to gain any
information from any proper subset of the n shares. The security of the protocol is based on a
non-collusion assumption of the n servers. Each share is sent to a different server which will
then add the share to its local database by using the XOR operation.

When all servers agree that the epoch has ended, they XOR their local databases with the
ones stored at all other servers. The resulting database will then contain all messages that
have been submitted in the corresponding epoch in cleartext.

The decision when an epoch has ended is important for the privacy guarantees of the system
because the anonymity set of a user is only as large as the number of users who submitted
their messages in the ongoing epoch. The end of an epoch can be determined by a fixed time
in the order of hours, a fixed number of users who sent their shares to the servers or by any
other more complex scheme that fulfills the privacy requirements of the system. When an
epoch has ended and the cleartext database was published, all servers initiate a new epoch by
clearing their local databases. The authors also describe a mechanism to exclude malformed
client requests and handle two-way collisions.

By using distributed point functions, Riposte provides some kind of “reverse PIR” protocol that
offers decent performance for anonymous broadcast messaging. However, the size of the users
request is proportional to the square root of the size of the whole database.

3.2.5 Pond

Pond8 is an attempt to create a federated email-like communication service that leaks no
metadata. However, there are some differences and limitations compared to the traditional
mail system. The most noticeable is the absence of public identifiers for contacts. When
two users want to communicate, they first have to exchange a shared secret over an already
established secure channel.9

When the initial key exchange was successful, the clients send and receive messages via
Pond servers, implemented as Tor Hidden Services. Pond tries to hide metadata about the
messages that have been sent by always sending data at random points in time. If there

8https://github.com/agl/pond
9Pond suggests some interesting ideas to make this manual key exchange independent of often insecure mobile

devices. E.g. the author suggests a shuffled deck of cards, split into halves, which are given to the two
participants who want to communicate, resulting in approximately 49 bits of entropy for one deck of cards or
around 100 bits for two decks.
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is no message to send, random data is transmitted instead. All messages are padded to
a fixed size to leak no information of the traffic profile. To prevent anyone from sending
messages to a user, Boneh-Boyen-Shacham group signatures [BBS04; CH91] are used. Each
contact of a user will be part of the group that is able to sign a message to this user without
revealing his or her own identity. Note that this design allows a server to learn how many
messages a user receives even if it is impossible to determine who sent a message to a specific
user.

The author of Pond discontinued the project and suggests to use other services instead.
However, the project contributed some interesting ideas which may prove useful in future
work.

3.2.6 Ricochet

Ricochet10 is an instant messaging service that is fully decentralized and tries to eliminate
the exposure of metadata. In Ricochet, Tor hidden services are used to create private
communication channels and the address of a user’s hidden service is used as an identifier
that has to be exchanged out-of-band to establish a connection. Since each user creates
one and connects to a number of hidden services, the plaintext identifiers are leaked to
the Tor Hidden Services Directories (HSDirs). Recent research has shown that HSDirs are
actively used to track users inside the Tor network [SN16]. Since Ricochet is based on the
Tor Hidden Service architecture, its privacy assumptions strongly depend on the security
thereof.

3.2.7 Ri�le

Riffle [KLDF16] claims to provide scalable low-latency and low-bandwidth communica-
tion based on mix networks [Cha81] using verifiable shuffles [BG12; FS01; Nef01] to pro-
vide sender anonymity and private information retrieval to provide receiver anonymity.
An anytrust model was chosen to provide the security guarantees using a multiple server
setup.

In Riffle, time is divided into epochs and each client sends and receives messages even if
they do not have anything to communicate. This is done to provide traffic analysis resistance.
Each epoch is divided into two phases, the setup phase and a communication phase which
is again split up into multiple rounds. The authors state that traditional verifiable shuffles
would be unsuitable for high bandwidth communication and introduce a novel type of
verifiable shuffles, called hybrid verifiable shuffle. Instead of sending the actual messages
through the mix network, clients generate shared secrets which are then sent through the mix
network to the last server Sm in the setup phase. The servers perform a verifiable shuffle and
verifiable decryption of the onion-encrypted messages and send the result to the next server.

10https://ricochet.im/
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Because the keys are onion-encrypted by the client, none of the other servers Si,i 6=m of the
mix network are able to gain any information about the shared secrets. Each server Si stores
the permutations πi used within the verifiable shuffle for later usage in the communication
phase. This significantly reduces the computational cost for the verifiable shuffles and allows
the servers to bootstrap verifiability from the initial shuffle of keys.

In each round of the communication phase, clients onion-encrypt their messages to be trans-
ferred and send them to the same server as in the setup phase. Splitting the communication
phase into multiple rounds now reveals the advantage that the permutations πi for each
server Si can be reused multiple times. When all messages have been collected by the last
server Sm, they can now be decrypted by the keys exchanged via the verifiable shuffles in
the setup phase. They are then distributed among all servers and, depending on the appli-
cation, either broadcasted to all clients or selectively transmitted using private information
retrieval. As described in the paper, information theoretic multi-server private information
retrieval offers the opportunity to only download the messages a client is interested in and
thus reduce bandwidth costs. The used PIR scheme based on the one initially introduced
by Chor et al. in [CKGS95] could probably be easily replaced by RAID-PIR, introduced
by Demmler, Herzberg and Schneider in [DHS14], to improve Riffles performance even
further.

3.2.8 The Pynchon Gate

The Pynchon Gate is an anonymous mail system presented by Sassaman and Cohen in [SC05]
that guarantees receiver but does not provide sender anonymity. The use of a mix-network is
suggested to also guarantee the privacy of senders. To achieve receiver anonymity, private
information retrieval is used. When a sender sends a message to the server, the message is
placed in a tree structure of fixed-size buckets which can later be privately queried by its
recipient. The used PIR scheme is the one introduced in [CKGS95] and could probably easily
be replaced by RAID-PIR.

3.2.9 Conclusions & Comparison

In the protocols outlined in the previous sections, several building blocks have been used to
create privacy-preserving communication channels. These building blocks will be summarized
in this section.

One noticeable pattern is that time is often divided in epochs to assure some anonymity
guarantees among a set of users or to separate different rounds of communication. This
technique is often used in combination with PIR-based solutions or mix networks. The epochs
used in Riposte [CBM15] have to be quite long11 because a significant amount of clients
have to send their messages in Ripostes “reverse PIR” protocol in order to assure anonymity

11in the order of several hours
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among a significantly large group of users. A widespread approach to reduce the epoch
duration is to send random traffic at the client-side. While this improves on the latency of the
transmitted messages, it results in a significantly reduced available bandwidth of the whole
system.

Mix networks [Cha81; CJK+16], which are another building block for privacy preserving
communication protocols, typically require computationally expensive zero-knowledge proofs
to be able to create verifiable shuffles and provide a protection mechanism against malicious
servers. However, latest research [KLDF16] has shown that it is possible to reduce the
computational cost of mix networks by introducing a hybrid verifiable shuffle and accomplish
reasonable performance.

Onion-routing used in the Tor network [DMS04] is conceptually similar to the idea of mix
networks but offers higher bandwidth, lower latency and therefore much better scalability.
Because of the fact that onion routing does not depend on any kind of cryptographic proof by
the servers and does not shuffle the messages in favor of lower latency, it is susceptible to traffic
analysis attacks by exit node operators or global adversaries. Using onion-routing instead of
mix networks is always a trade off between scalability and security.

Identity based encryption [Sha84; BF01; Coc01] used in Alpenhorn [LZ16] has shown to be
an efficient way to privately distribute public keys that requires no interaction with a server
at all. The biggest disadvantage of IBE is the concept of a central server generating and
distributing private keys. By suggesting an anytrust model for the IBE servers, Alpenhorn
manages to provide a solution for this disadvantage, making IBE a very interesting concept
for future research.

An overview over the privacy enhancing technologies used in the presented protocols is given
in Table 3.1.

Protocol used privacy preserving technologies

Redphone bloom filters
DP5 computational PIR
Alpenhorn identity-based encryption, mix network, keywheel construct
Riposte “reverse PIR”, broadcast
Pond Tor Hidden Service
Ricochet Tor Hidden Service
Riffle mix network (using hybrid verifiable shuffles), broadcast or PIR
The Pynchon Gate information-theoretic PIR, mix network
Here: OnionPIR information-theoretic PIR, Tor

Table 3.1: Privacy Enhancing Technologies used in existing privacy preserving communication
protocols
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3.3 SystemModel and Goals

Existing private communication networks do not really scale for huge numbers of users or
require the exchange of a shared secret out-of-band which leads to usability issues most users
are not willing to accept. Even though there are some privacy-aware people who would take
the burden of exchanging a shared secret in a secure way, most people will not. The success
of the popular messaging app Signal12 and the adaption of its protocol in WhatsApp and
Facebook Messenger are significantly founded on the combination of strong security and great
usability. Since most users do not have any deep knowledge on cryptographic primitives,
it is necessary to build technologies that provide privacy and usability by design and give
reasonable defaults for these users.

Another design goal was to create the possibility to build real-time communication channels
like voice calls or large file transfers. These features require a tradeoff between information-
theoretic security and practical applicability. The anonymity network Tor [DMS04] is used to
provide security against most types of attackers. Only if the system scales well, it is possible
to support a large number of users and therefore provide protection against mass surveillance.
This comes with the restriction that the system may not be sufficient for people that are under
direct attack by a global adversary that is able to break the security assumptions Tor is based
on.

To combine the strong information-theoretic privacy guarantees of private information re-
trieval protocols with the efficiency of onion routing protocols, the interaction with the
server is divided into two phases, an initialization phase where the communication chan-
nels are established and a communication phase where the actual communication takes
place.

In the initialization phase, PIR techniques are used to privately exchange information between
two parties which want to communicate securely. This information is exchanged in a way
that no one except these two parties will ever get to know that the communication between
them ever happened. Private information retrieval enables the two communication partners
to retrieve contact details without revealing any information about the query to the server.
This procedure could theoretically be used to exchange all kinds of data. However, when it
comes to practical applicability, querying huge amounts of information via PIR has shown to
not scale well for a larger number of users.

Therefore, the exchanged information are then used to place messages, encrypted using
Authenticated Encryption with Associated Data (AEAD), in an anonymous inbox, called “dead
drop”, at the OnionPIR server in the communication phase. By using onion routing to hide
the identity of the communication partners, the server is not able to determine who sent and
received the message.

12downloaded by 1.000.000-5.000.000 users according to Google Play, https://play.google.com/store/
apps/details?id=org.thoughtcrime.securesms
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Figure 3.1: OnionPIR system model. Each client performs PIR queries via the mirror servers.
The OnionPIR server handles user registrations, holds the database for the dead
drops and distributes the PIR database to the mirrors. Client may connect to the
OnionPIR server directly or via Tor.

3.4 Protocol Description

The OnionPIR system model, depicted in Figure 3.1, consists of the clients who want to
communicate with each other and different types of servers. All honest clients together form
the anonymity set among which a user is anonymous. That means that a potential adversary
cannot determine which users within this set communicated with each other. The central
OnionPIR server is a fundamental part of the system. It handles user registration and serves
as a content provider for the PIR servers. It also acts as a database server for the anonymous
“dead drops” that are used to communicate in the communication phase. The PIR servers are
used in the initialization phase to privately perform the key exchange between two clients. A
simplified version of the protocol is depicted in Figure 3.2.

When a client A registers for the service, it first runs through an account verification process
and sends its public key to the OnionPIR server which will later distribute it to the PIR servers.
Another client B, that has an address book entry for A, will later privately query for A’s public
key using private information retrieval. Using PIR to query the public key ensures that the
servers are not able to selectively send specific public keys to a given user unless they collude.
Each user periodically queries for his or her own public key to make sure the servers are
not distributing bad keys (see §3.5 for details). B will then use his own private key and
the received public key to generate a shared secret KAB between A and B by performing an
Elliptic Curve Diffie-Hellman (ECDH) key exchange. Since no communication with the server
is required to derive the shared secret, this type of key agreement protocols is often also
called private key agreement. In the same way, A is also able to derive the shared secret KAB
using her own private key and the public key of B.

The shared secret KAB is then used to derive the identifiers for the anonymous dead drops
used to exchange messages. Dead drops are always accessed via Tor to hide the user’s identity.
In order to hide which accesses are done by the same client, the connection to two different
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Alice OnionPIR Bob
pkA

authenticated access

pkB

authenticated access

query for pkA

via PIR

query for pkB

via PIR

derive I DA→B derive I DA→B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . communication phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

write to dead drop I DA→B

via Tor

read dead drop I DA→B

via Tor

Figure 3.2: Simplified OnionPIR protocol. The registration, dead drop and PIR servers were
abstracted into one server. Key renewal and the answer of Bob are not shown.

dead drops is thereby done using two different Tor circuits. The identifiers for the dead drops
are derived by first concatenating the key KAB with the public keys of both communication
partners separately and hashing the resulting values using a cryptographic hash function.
Thereafter, the client A holds two different shared secrets, KA→B = hash(KAB||pkB) for sending
messages to B and KB→A = hash(KAB||pkA) for receiving messages from B. These secrets
constantly get replaced by new ones transmitted alongside every message to provide forward
secrecy. After this step, the shared secret KAB is not needed anymore.

The identifiers of the dead drops could then be built by concatenating the keys KA→B and
KB→A with a nonce Nt that increases after a given time period and hashing the resulting values
using a cryptographic hash function. Hence, the identifier I DA→B = hash(KA→B||Nt) would
change in a fixed interval - even if no messages were exchanged at all. This would prevent the
server from identifying clients that disconnect for several days and would otherwise reconnect
using the same identifiers. However, a fixed point in time at which the nonce changes (i.e. a
unix timestamp rounded to the current day) is not a good choice. Assuming synchronized
clocks often is error-prone13. If all clients would update their identifiers at a given point in
time, e.g. at midnight, the server could detect a correlation between all identifiers of a user
whose clock is out of sync. Thus, the nonces will be handled per contact and the secret keys

13The need of secure time synchronization protocols lead to a number of secure time synchronization concepts such
as ANTP [DSZ16], NTS (https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-
14) or Roughtime (https://roughtime.googlesource.com/roughtime).
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KA→B and KB→A are used to generate two points in time during the next time period at which
the nonces NA→B and NB→A will be increased. This results in a different update time for all
identifiers of dead drops a user connects to.

When a client A wants to send a message m to client B, it encrypts the message using
Authenticated Encryption with Associated Data (AEAD) provided by the Networking and
Cryptography library14 (NaCl) so that only B can read it and stores it in the dead drop I DA→B.
Note, that the ciphertext of the encrypted message m does not reveal any information about
the sender or the receiver as explained in [Ber09, Sect. 9].

Querying for contacts using PIR is also done in a fixed interval, e.g. once a day, to discover
new users of the system. It is mandatory not to write to the dead drop specified by the
shared secret immediately after receiving a new public key. This would allow an adversary
to correlate a PIR request of a given user with (multiple) new requests to the dead drop
database, even if the server does not know which public keys were queried. Instead, the first
access to the dead drop database for new identifiers is delayed until a point in time between
the current query and the next one derived from the shared key. Note, that this delay is only
necessary when a new contact is discovered. New users joining the service will therefore
also have to delay their first interaction with other users. This can be represented with the
concept of “friend requests” in the user interface.

3.5 Security Assumptions

To ensure the security guarantees of OnionPIR, it is necessary to trust on the security guar-
antees of the underlying protocols. First, it is assumed that RAID-PIR is secure and does
not leak any metadata about the information that have been queried by a client. A security
argumentation why this is the case is given in [DHS14]. In particular, it is important that
the PIR servers are run by different operators that fulfill the non-collusion assumption of
RAID-PIR. Note, that the security guarantees of RAID-PIR are still fulfilled if r − 1 out of r
server operators collude with the other ones where r is the redundancy parameter15 intro-
duced in [DHS14]. A good choice for the operators would be a number of NGOs located
in different legal territories. It is also mandatory that the different PIR servers are not in
(physical) control of the same data center operator.

Next, it is assumed that Tor provides anonymity for the users that tunnel their connections
through this anonymity network. This assumption implies that there is no global passive
adversary which is able to monitor and analyze the traffic of the users and colludes with
the operator of the OnionPIR servers or gains unauthorized access to them. Note, that it
is necessary to at least deanonymize two specific Tor connections in order to learn if two
users are communicating with each other or not. Therefore, an attacker would have to be
able to deanonymize all users of the service to gain the full social graph of a given user.

14https://nacl.cr.yp.to/
15in the trivial case, r equals the number of PIR servers
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An attacker that is only ably to attack a small number of preselected users would have to
already hold some information about possible communication partners to verify or falsify
these connections. OnionPIR does not put any effort in hiding that a user is using the service
at all. It is also worth mentioning that the non-collusion assumption of RAID-PIR also applies
to the used anonymity network. It would thus be possible to replace Tor by another anonymity
system operated by the owners of the PIR servers or only use Tor nodes that are under control
of the participating NGOs.

Anonymity is guaranteed among all honest users of the system. However, a malicious user
could announce the list of requests to the dead drop database performed by himself which
would remove himself from the anonymity set and effectively decreasing the sets size by 1.
Since this would affect the user’s own privacy and the anonymity set is typically large, this
attack is negligible. Furthermore, it is also assumed that all end systems are secure and no
user knowingly reveals any information about his contacts on purpose. Note, that no user
is able to gain any information about communication channels it is not participating in. In
addition, no user is able to prove that a communication took place. This is the case because
the Authenticated Encryption with Associated Data (AEAD) used to encrypt the messages
guarantees repudiability.

OnionPIR relies on a Trust On First Use (TOFU) strategy to lessen the burden of manually
exchanging public keys through a trusted third channel. Nevertheless, some additional
precautions were taken to minimize the risk of a server distributing bad public keys by
detecting such attacks. For that purpose, a client queries not only for the public keys of its
contacts, but also for its own public key. Since the PIR servers are not able to determine
which PIR blocks are being requested during a query, they are not able to manipulate the
resulting response in a meaningful way unless they collude. This query can be performed at
nearly no cost when querying together with other contacts using RAID-PIR’s the multi-block
query. Of course, it is still possible, but not required, to provide additional security by adding
additional out-of-band key verification techniques or publicly announce a user’s public key
on a personal website. Another interesting option would be to implement some plausibility
checks for the updates of the PIR database in the PIR mirrors and thereby extend the existing
anytrust model.

Access to the dead drops used to store messages is not protected against any type of unautho-
rized manipulation by third parties at all. Since only the communication partners privately
agreed on the identifier for the dead drop, this is not necessary. An adversary that is inter-
ested in deleting the messages for a specific client would have to brute-force the identifier
of the dead drop which is impossible in practice. Protection against a server deleting mes-
sages or blocking access to the system is out of scope of this work. Federated or completely
decentralized systems would be needed to solve this issue.

Protection against malicious clients requesting to store large amounts of useless data in the
dead drops is not implemented but could easily be achieved by making use of blind signatures
[Cha83; CFN90]. A client could encrypt a number of random tokens and authenticate against
the server who will then blindly sign them. The tokens can then be decrypted by the client
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and sent to the server with each write access to the dead drops. While the server is able
to determine that these tokens have a valid signature, it is not able to identify the client
who generated them. Since a server will only sign a fixed number of tokens in a given
time interval per client, this approach can be used to rate-limit the write requests to the
database.

3.6 Analysis

3.6.1 Complexity and E�iciency

OnionPIR was designed to provide efficient anonymous communication. Many of the existing
systems summarized in §3.2 either require a high communication overhead or come with
high computational costs. In order to create a scalable network, it is important to make
communication as cheap as possible. The dead drop database used in OnionPIR is therefore
combined with scalable onion routing and can be implemented as a simple key-value storage.
These type of servers needed for the communication phase can be deployed with very low
operating costs, comparable to traditional communication services.

The relevant part in terms of scalability of the system is the initialization phase in which
the PIR requests are performed. As shown in section §2.3, PIR is a valid choice that offers
reasonable performance and allows users to detect malicious actions of the servers. The
size of the PIR database used to perform the benchmarks in §2.3 (about 3.8 GB) would be
sufficient to store the public keys for 126 Mio. users.

As the number of users grows, the database size and the server-side computational overhead
will grow linearly due to the higher amount of data involved during the XOR operations. The
ingress traffic for a PIR query also depends on the number of blocks B in the database and
therefore also scales linearly. Thanks to the pseudo random generators (PRG) introduced in
[DHS14], the size of a PIR query is B/8 Byte for all servers together (excluding the seeds for
the PRGs and the communication overhead for lower level transport protocols). However, as
long as the block size b does not change, the egress bandwidth is constant since the size of
the response does only depend on the block size (and the number of chunks for multi-block
queries).

In §2.3 it was shown that an optimized multi-block PIR query for 190 blocks of 64 KB each in
the database with uniformly distributed entries and k = 3 servers with redundancy parameter
r = 2 took about 4 seconds (Figure 2.6). This scenario is relatively close to the OnionPIR use
case. If each user has around 95 contacts on average, this time decreases to about 2 seconds
and represents a pessimistic upper bound to the computational overhead (since this time
also includes the communication overhead for the WAN setup). The calculation performed
at each mirror is deterministic and only depends on the query from the client and the static
database which allows replication to equally divide the computational overhead per instance.
Since each of the servers used to answer the PIR request in the test scenario features eight
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cores and only one was used in our test scenario, eight mirror instances could be deployed
per server. As shown in the benchmarks, three servers with one instance each are able to
handle (24 · 60 · 60)s/2s = 43 200 users per day. When this setup is replicated three times,
resulting in nine servers, and eight instance are executed per server the whole setup would
be sufficient to handle 43 200 · 8 · 3= 1 036 800 users for an epoch duration of 24 hours, as
suggested in §3.4.

The multi-block queries for 190 blocks in the uniformly distributed database result in 69
individual requests returning 2.75 relevant blocks on average. Since there are 61 590 blocks
in the database and the seed used for the pseudo random generator is 16 Bytes long, the data
sent to each server sums up to 69 · (d61 590/8e Byte+ 16 Byte) ≈ 532 KByte. Each server
that runs eight instances and serves 43 200 clients will therefore receive around 171 GB per
day and has an average ingress data rate of 16.25 Mbit/s.

For each query, 2 · 65 536 Byte= 131 072 Byte are sent per mirror in response to a client’s
request, resulting in a daily egress traffic of 43 200 · 69 · 131 072 Byte · 8 ≈ 2 911 GByte or
276 Mbit/s per server.

3.6.2 Correctness

Correctness of RAID-PIR is defended in [DHS14], correctness of Tor is explained in [DMS04]
and has already been well-proven in practice. Messages are acknowledged and retransmitted
if the identifiers changed and the message has not been read yet. Therefore it is guaranteed
that messages will reach their desired destination. Correctness of the ECDH key exchange
is justified in [Ber09]. All operations involved in the private establishing of identifiers
for the dead drops are deterministic and therefore result in the same identifiers for both
communication partners.

3.7 Implementation

We implemented OnionPIR in Python using RAID-PIR as the private information retrieval
library, the Networking and Cryptography library (NaCl) for elliptic curve encryption and
Stem16 as a controller library for Tor. The system was divided into a client including a web
server to serve the user interface, the OnionPIR server handling user registrations and acting
as a RAID-PIR vendor and the PIR mirrors that are used to answer the PIR requests. The
client typically runs at the user’s end system but could also be running on a private home
server in control of the user. The OnionPIR server is typically operated by the service provider
while the PIR mirrors should be operated by a number of third-parties.

In order to increase reusability of the code in future clients, major functionalities, such as
sending or receiving messages, the PIR client and the registration process, were bundled in

16https://stem.torproject.org/
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the OnionPIR client library. The user interface for the client was built using web technologies
including AngularJS17, jQuery18 and Bootstrap19. CherryPy20 was used as a webserver that
communicates with the user interface.

We designed the client – as well as the OnionPIR protocol – with usability in mind. The
user will therefore never see any cryptographic keys or other technical data. However, it
is possible to enable a so called “demonstrator mode” where it is possible to see which
operations are performed in the background. When this option is enabled, technical informa-
tion, such as the identifier for the dead drop being used to send and receive a message, is
shown.

Figure 3.3: Screenshot of the OnionPIR client

Currently, only email addresses can be used as an identifier for contacts. Since identifiers are
hashed before used to determine the location inside the PIR database at which the user’s public
key is stored, this is only an artificial restriction. Allowing any type of user names together
with a first-come-first-serve policy or connecting the OnionPIR server to a SMS gateway to
verify phone numbers would also be valid deployment scenarios.

The implementation is intended for testing and demonstration purposes only. For example,
only a minimalistic end-to-end encrypted chat protocol was implemented in the client. The
protocol does offer repudiability but, in contrast to more advanced end-to-end messaging
protocols like the Signal Protocol, does not implement forward secrecy.

17https://angularjs.org/
18https://jquery.com/
19https://getbootstrap.com/
20http://cherrypy.org/
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4 Conclusion

In this thesis, two optimizations to the RAID-PIR library [DHS14] were introduced, imple-
mented and evaluated: Preprocessing the entries of the PIR database using the Method of
Four Russians to speedup the generation of PIR responses and uniformly distributing those
entries to maximize the number of entries that can be fetched with one multi-block query.
We have shown that both improvements lead to a significant speedup for the designated use
cases. By combining both optimizations, the practical performance measured in a realistic test
scenario nearly reached its theoretic optimum and leaves almost no room for improvements
in some test cases.

An interesting topic for further research would be to query a variable number of blocks in
a single PIR request. This could be achieved by grouping the blocks of the PIR database
into a client-defined number of response groups and generate one PIR response per group
– similar to RAID-PIR’s multi-block scheme where responses are generated per chunk. In
combination with the presented uniform distribution of the data entries, most files could
be requested in a single query which would drastically decrease the amount of data that
has to be sent to the servers and also would eliminate the latency impact of the client’s
connection.

In the second part of the thesis, an overview over existing anonymous communication
protocols was given and their building blocks were summarized. Later, RAID-PIR was used
in combination with onion routing to build OnionPIR, a private communication system that
was designed to achieve a tradeoff between the strong but computationally expensive privacy
guarantees of PIR and the efficient but non information-theoretically secure onion routing.
Using PIR to distribute public keys has shown to be an interesting approach to spot some
kinds of attacks performed by the server, including the recognition of MITM attacks when
both communication partners are actively using the service and are periodically querying
for their public keys. Additionally, a prototype was implemented to show that the system is
usable in practice.
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