
Bachelor Thesis

Efficient and Practical Privacy-Preserving
Kidney Exchange Protocol

Timm Birka
March 31, 2022

Cryptography and Privacy Engineering Group
Department of Computer Science
Technische Universität Darmstadt

Supervisors: M.Sc. Tobias Kussel
M.Sc. Helen Möllering

Prof. Dr. Kay Hamacher
Prof. Dr.-Ing. Thomas Schneider

Erklärung zur Abschlussarbeit
gemäß §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Timm Birka, die vorliegende Bachelor Thesis ohne Hilfe Dritter und
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Täuschungsversuch vorliegt,
der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht
wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung überein.

Thesis Statement
pursuant to §23 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I, Timm Birka, have written the submitted Bachelor Thesis
independently. I did not use any outside support except for the quoted literature and other
sources mentioned in the paper. I clearly marked and separately listed all of the literature
and all of the other sources which I employed when producing this academic work, either
literally or in content. This thesis has not been handed in or published before in the same or
similar form.

I am aware, that in case of an attempt at deception based on plagiarism (§38 Abs. 2 APB),
the thesis would be graded with 5,0 and counted as one failed examination attempt. The
thesis may only be repeated once.

In the submitted thesis the written copies and the electronic version for archiving are identical
in content.

Darmstadt, March 31, 2022

Timm Birka

Abstract

In Kidney Exchange Programmes donor-recipient pairs exchange their incompatible donors
such that each pair that has donated a kidney receives a compatible kidney. In general, these
exchanges are performed in a cyclic fashion. The resulting cycles are called exchange cycles.
The kidney exchange problem is to find the most robust set of exchange cycles with respect to
transplantation success, so that as many recipients as possible receive a compatible kidney.

The evaluation of medical compatibility between donors and recipients requires highly
sensitive health information. Therefore, privacy-preserving solutions are required to protect
the sensitive health information of the patients and avoid accidentally leaking information to
unauthorised personnel.

In our work, we design, implement, and benchmark an efficient and privacy-preserving
solution to the kidney exchange problem. We outperform the run-time of current state-of-
the-art works of Breuer et al. [BMWM20; BMW22] by a factor of approximately 30000
for 9 pairs with cycle length L = 3 and by a factor of approximately 400 for 40 pairs with
cycle length L = 2. We include additional biomedical factors to increase the likelihood for
transplantation success.

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 3

2 Preliminaries 4
2.1 Medical Background . 4

2.1.1 Human Leukocyte Antigens . 4
2.1.2 ABO System . 7
2.1.3 Age . 7
2.1.4 Sex . 8
2.1.5 Weight . 8

2.2 Cryptographic Background . 9
2.2.1 Secure Multi-Party Computation . 9
2.2.2 ABY Framework . 10
2.2.3 Secure Outsourcing . 12

2.3 Graph Background . 14
2.3.1 Graph Theory . 14
2.3.2 Kidney Exchange Problem . 16

3 Related Work 17
3.1 Non Privacy-Preserving Solutions . 17

3.1.1 Robust Models for the Kidney Exchange Problem 17
3.1.2 Medical Analysis for Evaluating Compatibility in Kidney Exchange . . 18

3.2 Privacy-Preserving Solutions . 19
3.2.1 A Privacy-Preserving Protocol for the Kidney Exchange Problem 19
3.2.2 Privacy-Preserving Maximum Matching on General Graphs and its

Application to Enable Privacy-Preserving Kidney Exchange 20
3.2.3 Secure Graph Analysis at Scale . 21
3.2.4 Privacy-Preserving Linear Programming 22

4 Design and Implementation 23
4.1 Problem Statement . 24
4.2 Notation . 25
4.3 Compatibility Matching . 25

4.3.1 Overview . 26
4.3.2 HLA Cross-Match . 28

I

Contents

4.3.3 HLA Matching . 29
4.3.4 Blood Type Matching . 31
4.3.5 Age Matching . 32
4.3.6 Sex Matching . 33
4.3.7 Weight Matching . 34
4.3.8 Complexity Assessment . 35

4.4 Cycle Computation . 36
4.4.1 Overview . 36
4.4.2 Protocols . 37
4.4.3 Complexity Assessment . 38

4.5 Cycle Evaluation . 39
4.5.1 Overview . 39
4.5.2 Protocols . 40
4.5.3 Complexity Assessment . 45

4.6 Solution Evaluation . 46
4.6.1 Overview . 46
4.6.2 Protocols . 48
4.6.3 Complexity Assessment . 50

4.7 Overall Complexity Assessment . 51

5 Evaluation 52
5.1 Security Discussion . 52
5.2 Performance Benchmarks . 53
5.3 Comparison to State-of-the-Art . 59

6 Conclusion 64
6.1 Future Work . 64

List of Figures 66

List of Tables 67

List of Abbreviations 69

Bibliography 70

A Appendix 76
A.1 Full Benchmarks . 76
A.2 Fitting Models . 88

II

1 Introduction

Kidneys remove wastes and toxins from the body, so if none of a person’s kidneys are
functioning, they require treatment. There are two ways to treat malfunctioning kidneys.
The first is dialysis in which blood is cleansed from toxins, i.e., dialysis takes over the role
of the kidney. However, dialysis is very time consuming and has several risks, e.g., low
blood pressure, weight gain, sudden cardiac death [Bet22]. Second, it is possible to receive
kidneys from deceased or living humans. In 2021, there were in total 9874 recipients on
the active waiting list for kidneys in Eurotransplant countries [Eur22a]. In contrast, there
were only 1573 deceased kidney donors [Eur22b]. In Europe, Eurotransplant [Eur21a] is
an organisation which is specialised in organ transplantation such as kidneys and serves as
mediator between donors and recipients. For kidney transplantation, Eurotransplant focuses
on deceased donor donations [Eur21c]. This approach is not optimal as it comes with long
waiting times for the recipients due to the scarcity of deceased donor organs and possibly
degraded organ quality. These two problems significantly increase the risk of the recipients
to pass away before receiving a compatible kidney.

Humans possess two kidneys and are able to live with only one functioning kidney, thus,
living humans with functioning kidneys are able to donate one of their kidneys. This allows
recipients who did not receive a kidney through a deceased donor waiting list to receive a
kidney from a living donor. The first living donor transplantation was conducted in 1954
in the USA [Eur21b]. Since then living kidney transplants have become a very important
part of today’s kidney transplantation to significantly reduce waiting times for the recipients
on the active waiting list. However, even when a recipient manages to find a living donor,
it is not guaranteed that the donor and recipient are medically compatible. For these
cases, the so called living donor exchange system was implemented in 1991 [SCM+14]. In
living donor exchanges, recipients who have found a willing but incompatible donor, i.e.,
pairs, are able to exchange donors with other pairs in need of a kidney. These pairs ex-
change their incompatible donors such that ideally each recipient receives a compatible kidney.

In our work, we consider a scenario in which several donor-recipient pairs exchange their
donors in a cyclic fashion, so that each donating pair receives a compatible kidney. These
cycles are called exchange cycles [BKM+21]. Figure 1.1 shows an example exchange between
donor-recipient pairs. Pairs and compatibility between pairs are encoded in a graph structure.
The resulting graph is called compatibility graph. The problem of finding a set of exchange
cycles on a graph which maximises the number of transplants being carried out is known

1

1 Introduction

Figure 1.1: Cyclic exchange of donors in kidney exchange programmes.

as the kidney exchange problem. We use tools of graph theory and discrete optimisation to
solve the kidney exchange problem.

Determining medical compatibility between pairs requires the analysis of highly sensitive
medical health data of the donors and recipients, which makes it pivotal that no information
is leaked accidentally to unauthorised personnel. Thus, our protocol requires the implemen-
tation of privacy-preserving techniques such that the plain text health information remains
locally at each medical institution and the analysis is run on distributed data which is leak-
ing nothing beyond the output: a set of exchange cycles with high transplantation success
likelihood. In the end, these found cycles are checked by medical experts.

1.1 Contributions

We design and implement an efficient privacy-preserving kidney exchange protocol in the
semi-honest security model. In comparison with current state-of-the-art [BMWM20; BMW22],
we improve the medical quality of the compatibility matching by considering additional
biomedical factors.

We benchmark our protocol and show that it achieves practical run-times and communi-
cation cost for real-world applications. Our protocol shows an about 30000× speedup
over [BMWM20] and about 400× over [BMW22]. In addition, we provide benchmarks to
further demonstrate the scalability and practicality of our protocol.

2

1 Introduction

The software implementation is available in the following repository: https://github.com/
encryptogroup/ppke.

The results of this work are presented in [BHK+22] which is still in submission and an abstract
of this work was published at the 33rd Crypto Day [BKMS21].

1.2 Outline

In Chapter 2, we introduce the basic concepts for our privacy-preserving kidney exchange
protocol. In Section 2.1, we provide the necessary medical background information that
is needed for the reasoning behind choosing the biomedical compatibility factors. In Sec-
tion 2.2, we explain the cryptographic building blocks and protocols used in our Efficient
and Privacy-Preserving Kidney Exchange Protocol (EPPKEP), and, lastly, in Section 2.3, we
introduce fundamental graph theory and give an overview of the kidney exchange problem.

In Chapter 3, we discuss related work, separated into non privacy-preserving related
work (Section 3.1) and privacy-preserving approaches to the kidney exchange problem (Sec-
tion 3.2).

Chapter 4 contains the design and implementation details of our EPPKEP. In Section 4.3, we
cover the compatibility graph construction given a set of pairs by evaluating their medical
compatibility. Sections 4.4 and 4.5 cover the cycle evaluation and in Section 4.6, we compute
the most robust set of exchange cycles. At last, we show the asymptotic complexity of our
EPPKEP and compare it with current state-of-the-art works by Breuer et al. [BMWM20;
BMW22] (cf. Section 4.7).

Chapter 5 contains the security discussion of our EPPKEP (cf. Section 5.1), and the run-time
and communication performance of our EPPKEP (Section 5.2). Lastly, we compare run-time
performance and communication with current state-of-the-art in Section 5.3.

Finally, in Chapter 6, we conclude this thesis 5 and give directions for future work.

3

https://github.com/encryptogroup/ppke
https://github.com/encryptogroup/ppke

2 Preliminaries

As the research problem of this thesis is located at the intersection of multiple fields - medicine,
cryptography, and mathematics - we give a brief introduction into the relevant subjects. First,
we explain the biomedical, then the cryptographic, and graph theory concepts.

2.1 Medical Background

First, we focus on understanding the cause of allograft rejection in kidney transplantation
which is the main reason for failing kidney replacement interventions. In order to understand
this, we explain the basic function of the immune systems and antigens that play a significant
role in allograft rejection. In addition, we explain supplementing biomedical factors we
consider in our Efficient and Privacy-Preserving Kidney Exchange Protocol (EPPKEP) to
increase the medical quality of our solution.

2.1.1 Human Leukocyte Antigens

Every human possess an immune system which is responsible for protecting the body against
potentially harmful invaders, called pathogens [AJL+02]. The immune system is a complex
network of cells and proteins that defends the body against infections [Bet21]. It is divided
into the innate immune system, which is fully developed after birth, and the adaptive im-
mune system which evolves during the lifetime by building antibodies against encountered
pathogens [AJL+02]. The adaptive immune reaction consists of an antibody-mediated response
and a cell-mediated response [AJL+02]. The antibody-mediated response is caused by B-cells
which are a type of white blood cells (leukocytes). B-cells produce antibodies which can dock
on antigens and prevent them from docking on organs [AJL+02], thus, protecting the organs
from possible harmful pathogens. The cell-mediated response is caused by T-cells which are
another type of leukocytes. T-cells recognise unknown cell structures on antigens and trigger
an antibody-mediated response by alarming B-cells, thus producing antibodies against the
unknown antigen [AJL+02].

An antigen is the molecular structure on the outside of a pathogen, which can be bound by
an antigen specific antibody. Antigens can be divided in two groups. First, there are broad
antigens, which has a cell structure that can be further divided in two or more split antigens.

4

2 Preliminaries

Second, Split antigens have a more refined cell surface than broad antigens and are, therefore,
more specific than broad antigens. In general split antigens are assessed for determining
compatibility [Eur21d].

Each human innately possesses a number of certain antigens called Human Leukocyte Anti-
gens (HLA). For every human the genetic information for the most HLA can be found on
the so called Major Histocompatibility Complex (MHC), which is a large area on chromo-
some 6 [NHK01] that is always at the same location, called locus. The MHC is a large area on
the human DNA, which contains antigens encoding the surface of cells. HLA can be divided
in up to three classes [CCA13], where only class I and II are relevant for our cause. The
HLA classes are divided according to their position within the MHC and their function. HLA
class I restricted T-cells recognise endogenous antigens synthesised within the target cell
and are therefore responsible for a cell-mediated response of the adaptive immune system.
HLA class II restricted T-cells recognise endogenously derived antigens and is restricted to
antigen-presenting cells such as B-cells [Cho07]. Thus, HLA class II antigens are responsible
for a antibody-mediated response of the adaptive immune system since they regulate how
T-cells respond to an infection [OPS13].

A way to check whether a recipient, a person who is in need of a healthy kidney, and a
donor, a person willing to donate their kidney, are compatible in general, is to perform a
HLA cross-match [Eur21d]. For HLA cross-matches the HLA of a donor are tested against
the HLA antibodies of a recipient. If a recipient has antibodies against one or more of the
donor’s HLA, a transplant carries a higher risk of an Antibody Mediated Rejection (ABMR) or
allograft loss due to the already existing antibodies [LLH+10; NIK+11], i.e., they are deemed
incompatible. But, in some cases, even a positive cross-match does not deem a transplant
impossible because of possible immunosupressants [SCM+14], but those cases need a more
in-depth assessment, which is out of scope for an algorithmic evaluation.

According to Eurotransplant, the typical HLA that are most frequently screened in kidney
transplantation are HLA-A, -B, and -DR [Eur21e]. The split antigens are considered as they
are more specific than broad antigens and are, therefore, better when it comes to determining
the compatibility between a donor and a recipient. In addition, the HLA-DQ loci plays an
important role, when it comes to ABMR [LPT+18].

The HLA classes we consider in our EPPKEP are listed in Table 2.1. They can be divided
into HLA class I and HLA class II antigens. With the assessment of those HLA, we follow
Eurotransplant’s [Eur21d] guidelines for determining compatibility in kidney transplantation.

5

2 Preliminaries

Table 2.1: HLA split antigens assessed for determining compatibility.

Class I Class II

HLA-A HLA-B HLA-DR HLA-DQ

A23 B51 B38 DR11 DQ5
A24 B52 B39 DR12 DQ6
A25 B44 B57 DR13 DQ7
A26 B45 B58 DR14 DQ8
A34 B64 B49 DR15 DQ9
A66 B65 B50 DR16
A29 B62 B54 DR17
A31 B63 B55 DR18
A32 B75 B56
A33 B76 B60
A74 B77 B61
A68 B71
A69 B72

To further evaluate the quality of compatibility of a recipient and a donor, we compare the
HLA of the recipients and donors in contrast to the cross-matching procedure, which compares
antigens to antibodies. Different HLA in recipients and donors increase the chances of allograft
loss after transplantation due to ABMR, which arise after the transplantation [OD12]. A HLA
mismatch is described as a donor having a HLA that a recipient does not have, and vice versa.
A higher amount of mismatches increases the risk of allograft failure. HLA mismatches are
not an exclusion criteria for a transplantation because of modern immunosupressants, which
reduce the risk of allograft loss. However, they decrease the allograft survival chances and
are, therefore, an important factor to consider [Ope97; OD12; LCC+12]. Each person has up
to two types of antigen of each HLA group which are inherited from their parents. Therefore,
this results in a maximum of two mismatches per gene locus [NHK01].
One of the reasons why fewer mismatches lead to higher allograft survival chances is that it is
less likely for a recipient to develop donor specific antibodies after the transplantation, which
can be the cause for allograft rejection [OD12; LCC+12]. Especially HLA-DQ antigens play an
important role in allograft survival because HLA-DQ mismatches result in a lower allograft
survival rate, which comes from ABMR caused by the development of HLA-DQ antibodies
post transplant [LPT+18].
According to Opelz et al. [OD12], we can group the number of mismatches in one of four
different risk groups. Depending on the number of mismatches, the chances of allograft
survival decrease. Fewer mismatches correlate with a higher allograft survival chance, but
having no mismatches is very rare and mostly only happens in cases where donor and
recipient are twins. The next best results achieve transplantation with only 1 to 2 HLA
mismatches. Transplantation with 3 to 4 HLA mismatches also have a decent outcome, while
transplantation with 5 or more HLA mismatches face serious ABMR risks.

6

2 Preliminaries

2.1.2 ABO System

When it comes to compatibility in kidney donations, the blood group of the recipient and
donor plays a significant role. One way to differentiate blood characteristics is the ABO
blood system [Blu21]. In the ABO system, there are four different blood groups, O, which
does not contain any antigens on the surface of the red blood cells (erythrocytes), A, which
contains only antigen A on the surface of the erythrocytes, B, which contains only antigen B
on the surface of the erythrocytes, and AB which contains antigen A and B on the surface of
the erythrocytes [Blu21]. It is important that the blood groups of recipient and donor are
compatible, in this case we talk about ABO compatibility.
While ABO incompatibility does not make a transplant impossible, thanks to modern immuno-
suppression, it increases the chance of success in kidney transplantation [WB18]. Additionally
organs need to be processed such that there are no traces of an incompatible blood type
left. It leads to a higher risk of allograft loss during the first year post transplantation
and it increases the risk for recipients to get severe infections, e.g., viral infections, ABMR,
and postoperative bleeding [WB18]. Still, in the long-term outcome, ABO-incompatible
transplants have similar outcomes to ABO-compatible transplants. For this reason, we include
ABO compatibility as an additional factor rather than an exclusion criteria contrary to the
current state-of-the-art [BMWM20; BMW22].
A table of which blood group can donate to which blood groups is listed in Tab. 2.2.Note
that we show the percentage of the European population that possess the respective
blood groups.

Table 2.2: ABO compatibility according to [Blu21]

Blood Group Population in % [FGHW14] Can Receive From Can Donate To

O 45 O O, A, B, AB
A 40 O, A A, AB
B 11 O, B B, AB

AB 4 O, A, B, AB AB

2.1.3 Age

According to Waiser et al. [WSB+00], age disparity plays an influential role when it comes
to allograft survival post transplant. The authors have put donors and recipients in two
groups according to their age. Old donors and recipients that are 55 years or older and young
donors and recipients who are younger than 55 years old. They found out that old recipients
with older and younger donors have better long-term allograft survival compared to young
recipients. But kidneys from old donors in young recipients significantly reduce the actual
allograft survival. We follow the categorisation w.r.t. age of this work [WSB+00]:

7

2 Preliminaries

Age Groups:

Junior: This group contains all donors and recipients below the age of 55.
Senior: This group contains all donors and recipients at the age of 55 and above.

Waiser et al. [WSB+00] conclude that kidney donations within the same age group have
the best outcomes and are more efficient when it comes to the usage of the donated kidney
because, for older recipients, it is more common that they die from a cause unrelated to
the transplantation when receiving the kidney from a younger donor, which means that the
kidney could have survived longer in a younger recipient. In addition, the allograft survival
of kidneys from senior donors in junior recipients is the worst.

2.1.4 Sex

The sex of donors and recipients also has an impact on allograft survival [ZCH+12]. De-
pending on the combination of sexes, i.e., female donor/female recipient (FDFR), female
donor/male recipient (FDMR), male donor/female recipient (MDFR), male donor/male
recipient (MDMR), the outcome of the transplant varies a little.
According to Zhou et al. [ZCH+12], the worst allograft survival have male recipients for
female donor organs, while recipients who received their kidney from a same sex donor
perform slightly better than female recipients for male donor organs.

2.1.5 Weight

In addition to the previously mentioned factors, the weight of donors and recipients has an
impact on the outcome of allograft survival. It is known, that a weight difference between
a donor and a recipient has a negative impact on allograft survival. According to Miller et
al. [MKA+17], recipients who received a kidney from a lighter donor have higher chances of
allograft loss than other recipients. El-Agroudy et al. [EHB+03] come to a similar conclusion.
They reason that the allograft loss for recipients with kidneys from lighter donors can be
caused by kidney not being able to support the body functions of a heavier recipient.

8

2 Preliminaries

2.2 Cryptographic Background

In this section, we focus on understanding the cryptographic primitives and tools we use to
implement our EPPKEP.

Our goal is to compute the results of our EPPKEP without leaking any sensitive medical
information of the participants. To achieve that, we rely on secure computation techniques
which enable us to securely compute arbitrary functions on distributed private inputs of the
participants. Secure computation protocols are required to achieve that without relying on a
trusted third party, i.e., a third instance that is trusted by the participants to not leak any
information on the medical data of others other than what can be derived from one’s own
private input and the output. Proving the security of a protocol often requires the comparison
of the protocol with a so-called ideal functionality, which can be described as the protocol
being executed with a trusted third party, thus, no data is leaked.

So far there are two main paradigms that help realise that goal. The first one is Homomorphic
Encryption (HE) which is based on public-key encryption, thus, HE is computationally ex-
pensive. The second main paradigm is Secure Multi-Party Computation (SMPC) which is
based mainly on symmetric-key encryption, which is less computationally expensive than
HE but requires more interaction. In addition, SMPC is more flexible as it can arbitrary
functions. For these reasons, SMPC is more suited for complex real-world applications such
as our EPPKEP.

2.2.1 Secure Multi-Party Computation

The main technique that is used for our EPPKEP is Secure Multi-Party Computation (SMPC).
In SMPC, two or more parties jointly compute a functionality F while keeping the distributed
inputs private.

The functionality of our protocol is that there are several parties where each party represents
a hospital/kidney exchange centre which has one or more incompatible donor-recipient pairs
with the medical data of the donor di and the medical data of the recipient ri. Now, these
parties jointly compute our EPPKEP which represents the functionality F without leaking any
information. To achieve that, they compute compatibility between all donor-recipient pairs
and evaluate the resulting graph with respect to existing cycles (cf. Subsection 2.3.2).

In SMPC, there are different security models for proving the protocols security:

• semi-honest security: The involved parties honestly follow the protocol specification,
i.e., they do not try to manipulate inputs or local computations, but they try to learn
additional information from the transcript which contains the communication between

9

2 Preliminaries

the participating parties. Protocols designed for semi-honest security are not suited
for all real-world applications. However, as we argue later in this section, this is an
appropriate security model for this application. Furthermore, semi-honest protocols
are more efficient with respect to communication.

• covert security: The involved parties can arbitrarily deviate from the protocol, but
cheating is detected with a constant probability, e.g., 1

2 .

• malicious security: The involved parties can arbitrarily deviate from the protocol as well.
However, in malicious security, cheating is detected with an overwhelming probability,
e.g., very close 1. Protocols designed in a malicious security setting are considered to
be very secure in the real world, but are less efficient.

We design our EPPKEP in a semi-honest security setting as the involved parties are collaborating
medical institutes that can be assumed to honestly follow the protocols specification while
trying to learn as much information as they possibly can since they are generally trusted
and legally not allowed to share data among each other. Semi-honest security protects
our EPPKEP against curious personnel or accidental data leakage. Therefore, semi-honest
security is sufficient for our case. In addition, in contrast to malicious security, semi-honest
security is more efficient which enhances the practicality of our EPPKEP and allows us to use
ABY [DSZ15] as our SMPC framework.

2.2.2 ABY Framework

For implementing our EPPKEP, we utilise the ABY Framework [DSZ15]. ABY [DSZ15] is
an efficient mixed-protocol secure Two-Party Computation framework that implements
three well established SMPC protocols: Yao’s Garbled Circuits (Y) [Yao86], Arithmetic
Secret Sharing (A) [GMW87], and Boolean Secret Sharing (B) [GMW87]. Additionally, ABY
implements state-of-the-art optimisations, efficient conversions between the three sharing
types, and supports Single Instruction Multiple Data (SIMD) operations that can be used
to parallelise identical operations on different data to reduce memory usage and increase
the run-time performance. ABY [DSZ15] has been improved by [PSSY21], inter alia, they
improve the online communication for multiplications and conversions. Unfortunately, we
could not use these improved protocols for our EPPKEP as they have been implemented only
recently in [BCS21],

For the construction of our EPPKEP, we consider all three sharing types as our protocol can be
split into smaller portions for which we use different operations and, therefore, are possibly
more efficient in different sharing types, e.g., if there are Boolean and arithmetic operations.
We explain which sharing type we use for each protocol in chapter 4.

10

2 Preliminaries

The evaluation of protocols implemented in ABY can be divided into an offline (setup)
phase and an online phase. During the setup phase, we can precompute every opera-
tion that is independent of the inputs which allows for significant run-time improvements.
During the online phase, we compute every operation interactively that depends on the inputs.

In the following, we give an overview on the three sharing types in ABY.

Notation

We denote the secret share of a variable x as 〈x〉Si where S denotes the sharing type, i.e.,
S ∈ {A, B, Y }, and i indicates which party Pi , i ∈ {0,1} holds the share. We denote XOR

operations between two secret shared values as ⊕, AND gates are denoted as ∧, OR gates are
denoted as ∨, Not gates are denoted as ¬, and MUX gates are denoted as the ternary operator
condition ? true statement : false statement.

Arithmetic Sharing

We use the protocols for Arithmetic Sharing used in ABY [DSZ15] that were introduced by
Atallah et al. [ABL+04], Kerschbaum et al. [KSS14], and Pullonen et al. [PBS12] which are
based on [GMW87]. Arithmetic sharing describes additively sharing an ℓ-bit value x as the
sum of two integer values in an algebraic ring Z2l . It is used to work on Arithmetic Circuits
which are directed acyclic graphs where vertices represent the elementary operations of
the represented function. For a ℓ-bit Arithmetic sharing 〈x〉A of x we have 〈x〉A0 + 〈x〉

A
1 ≡ x

mod 2ℓ, with 〈x〉A0, 〈x〉A1 ∈ Z2l . To share x , Pi , i ∈ {0,1} randomly chooses r ∈R Z2l , sets
〈x〉Ai = x− r and sends r to P1−i , who sets 〈x〉A1−i = r, thus leaking no information on x . Now,
for the reconstruction of the shared value, P1−i sends its share 〈x〉A1−i to Pi who computes
x = 〈x〉A0 + 〈x〉

A
1 mod 2ℓ. In Arithmetic sharing, additions can be computed locally and

multiplications are computed interactively in the online phase.

Boolean Sharing

In Boolean Sharing functions are represented by Boolean circuits that are evaluated using the
protocol introduced in [GMW87]. Boolean Circuits are similar to Arithmetic Circuits directed
acyclic graphs where the vertices consist of primitive gates which realise the represented
function. Variables are secret shared using XOR operations. The Boolean Share 〈x〉B of a
variable x is shared between two parties. It holds that 〈x〉B = 〈x〉B0 ⊕〈x〉

B
1 for 〈x〉B0 , 〈x〉B1 ∈ Z2.

Sharing a variable is similar to the secret sharing in Subsection 2.2.2: Pi randomly chooses
r ∈R {0,1} and computes 〈x〉Bi = x ⊕ r, sets 〈x〉B1−i = r and sends it to P1−i. To reconstruct
the variable x , P1−i sends its share 〈x〉B1−i to Pi who reconstructs x = 〈x〉B0 ⊕ 〈x〉

B
1 . XOR gates

can be computed locally 〈z〉Bi = 〈x〉
B
i ⊕ 〈y〉

B
i and AND gates are evaluated interactively in the

online phase.

11

2 Preliminaries

Yao’s Garbled Circuits

Yao’s Garbled Circuits (Y) protocol [Yao82] is a secure two-party party computation protocol
that consists of two parties, a garbler who "encrypts" the Boolean circuit to a garbled circuit
and the evaluator who evaluates the garbled circuit. A garbled circuit is a Boolean circuit, i.e.,
a directed acyclic graph where the vertices are logic gates and the edges are wires. Each wire
w is assigned two wire keys (kw

0 , kw
1) with kw

0 , kw
1 ∈ {0, 1}κ and κ being the symmetric security

parameter. Now, the output wire keys of all gates are encrypted on all combinations of the
two input wire keys by the garbler (cf. Table 2.3). The garbled truth tables are then permuted
and sent to the evaluator, together with the corresponding input keys of the garbler’s input.
The corresponding keys of the evaluator’s inputs are obliviously sent to the evaluator. After
that, the evaluator iteratively decrypts the garbled gates using the input wire keys to obtain
the output wire key and jointly reconstructs the clear-text output of the circuit together with
the garbler. Yao Sharing requires no communication for the evaluation of XOR gate using the
technique of [KS08]. For AND gates, Yao Sharing requires 2κ bits of communication [ZRE15].
The number of communication rounds is independent of the depth of the circuit. Therefore,
Yao Sharing is more efficient for deep circuits and Boolean sharing is more efficient for
circuits with a lower circuit depth as the number of communication rounds depends on it.

Table 2.3: Garbled AND Gate

Input w0 Input w1 Output w2 Garbled Value

kw0
0 kw1

0 kw2
0 Enck

w0
0 ,k

w1
0
(kw2

0)
kw0

0 kw1
1 kw2

0 Enck
w0
0 ,k

w1
1
(kw2

0)
kw0

1 kw1
0 kw2

0 Enck
w0
1 ,k

w1
0
(kw2

0)
kw0

1 kw1
1 kw2

1 Enck
w0
1 ,k

w1
1
(kw2

1)

2.2.3 Secure Outsourcing

The ABY framework supports only two computation parties, but in our setting it is very likely
that the input data is held by more than two parties, i. e., medical organisations. Outsourcing
the computation parties from the input parties allows us to retrieve data from more than
two parties [KR11]. That means that all input parties secret share their data and send one
share to each of the two computation servers that are not allowed to collude. Choosing the
outsourcing model provides several advantages:

• The computation servers can be located in the same network, thus allowing to compute
our protocol in a setting with higher band-width and low latency. However, the compu-
tation still has to happen on two different servers operated by two different institutes.

12

2 Preliminaries

• The communication of SMPC protocols scales linear or even quadratic in the number
of computing parties. Outsourcing allows us to reduce the communication as we only
have two computing parties.

• By outsourcing, the input owners do not participate in the protocol itself which protects
our protocol from malicious data owners [KR11], as they can at most corrupt the
correctness of our calculations but not breach confidentiality.

13

2 Preliminaries

2.3 Graph Background

In this section, we focus on understanding the necessary graph theory and explain the kidney
exchange problem.

2.3.1 Graph Theory

In our protocol, we are representing compatibility information as a graph. A graph G consists
of a set of vertices V and a set of edges E . Edges are represented as pairs of vertices. There
exists an edge between two vertices u, v ∈ V if it holds that (u, v) ∈ E . The edges within a
graph G can be either directed or undirected. In an undirected graph, the pair (u, v) ∈ E for
u, v ∈ V is equivalent to (v, u) ∈ E , i.e., the edge pairs are unordered. In a directed graph,
(u, v) ∈ E is not equivalent to (v, u) ∈ E , thus the edge pairs are ordered. In addition, the
edges within a graph can be either unweighted or weighted. Some edges can have more
importance than other edges. To show the different importance of different edges, weighted
edges are assigned different values. In our EPPKEP, we are evaluating a weighted directed
graph to find cycles within our graph as a cycle represents two or more vertices that are
connected with each other. A cycle c is a list of vertices {v1, v2, . . . , vm−1} where an edge
exists from vertex vi to vi+1 for i ∈ {1, ..., m− 1}. Additionally, it has to hold that there exists
an edge from vertex vm−1 to vertex v1 to close the cycle. A vertex disjoint cycle is a cycle c,
where each vertex appears at most once in the cycle, hence it holds that for all v, u ∈ c that
v ̸= u. We define the length of cycles as the number of edges that are used to create a cycle,
i.e., the cycle {v1, . . . , vm} is of length m for m> 1. An example of a directed and weighted
graph is shown in Figure 2.1.

Figure 2.1: Example of a directed and weighted graph

We represent our graph as a weighted adjacency matrix which is a square matrix A where
each row/column represents the edges from/to a vertex, i.e., the directed edge connecting
vertex i with vertex j is encoded in the i-th row and the j-th column. Hence, if there exists
an edge from vertex i to vertex j, the entry ai j of A is set to the respective edge weight. If

14

2 Preliminaries

Figure 2.2: The cycle in the example graph in Figure 2.1.

there is no edge, the entry ai j is set to 0. The adjacency matrix representing the graph in
Figure 2.1 looks as follows:

⎛

⎜

⎝

0 1 3 2
0 0 0 3
0 1 0 0
0 0 2 0

⎞

⎟

⎠

Unweighted adjacency matrices allow to easily compute how many paths of a given length
exist in the topology by computing the respective power of the unweighted adjacency matrix,
i.e., if we want to find out how may paths of length n exist, we compute the n-th power of
the unweighted adjacency matrix A. In the resulting matrix, entries greater than 0 show that
there exists at least one path of a given length, e.g., if the entry ai j of An is greater than zero,
then there exists a path of length n from vertex vi to vertex v j . The entries on the diagonal
start and end with the same vertex, thus if an entry on the diagonal is greater than 0, it shows
that there exists at least one cycle of length n within our graph. As an example, we show this
computation with the graph shown in Figure 2.1. The graph consists of four vertices, thus
the corresponding unweighted adjacency matrix A is in N4×4:

A=

⎛

⎜

⎝

0 1 1 1
0 0 0 1
0 1 0 0
0 0 1 0

⎞

⎟

⎠

To find out the number of cycles of a given length that exist in A, we compute the respective
power of A. In this example, we are looking for cycles of length 3, the result looks as follows:

A3 =

⎛

⎜

⎝

0 1 1 1
0 0 0 1
0 1 0 0
0 0 1 0

⎞

⎟

⎠

3

=

⎛

⎜

⎝

0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎠

In the resulting matrix, the entries represent the number of paths of length 3 that exist in our
graph. To find the cycles we have to look at the entries on the diagonal where the entries of

15

2 Preliminaries

the second to fourth row are 1, which means that a cycle exists for vertices v ∈ {P2, P3, P4}.
As the three vertices are part of the same cycle, we know that there exists one cycle in our
graph. The cycle is shown in Figure 2.2.

2.3.2 Kidney Exchange Problem

Kidney Exchange Programmes are a way to find medically compatible donors for recipients
who have found a medically incompatible donor. A pair consists of a donor who is willing
to donate their kidney and a recipient who is in need of a compatible kidney. Usually, the
donor is a family member or close friend of the recipient who is willing to donate their
kidney to the recipient but is medically incompatible. Multiple pairs take part in Kidney
Exchange Programmes to find a mutually benefiting donor-recipient assignment. This way,
more recipients are able to receive a compatible kidney. Hence, more lives can be saved.
The goal of these Kidney Exchange Programmes is to find as many compatible pairs that can
exchange their kidneys. The problem that stems of this goal is the so called Kidney Exchange
Problem (KEP). It is an optimisation problem on a compatibility graph [BKM+21; PCCS18].

A compatibility graph is a directed, potentially weighted graph where vertices represent
donor-recipient pairs. To solve the kidney exchange problem, pairs try to exchange kidneys
in a cyclic fashion.

Directed edges indicate compatibility between two pairs, i.e., if there exists the directed
edge (u, v) ∈ E for u, v ∈ V, then the donor from pair u is compatible with the recipient
from pair v, thus pair u could donate a kidney to pair v. The goal of the KEP is to find
either the largest exchange cycle or as many fixed-length exchange cycles as possible within
the compatibility graph. Keeping the length of cycles flexible is also possible, however,
it is less efficient than deciding on a fixed length of cycles beforehand. Most approaches
to solve the KEP are based on Integer Linear Programming (ILP) without considering the
privacy of the donor-recipient pairs’ medical information. ILP computations are infeasible
in a privacy-preserving fashion due to their high computational complexity. However, in
kidney exchange data privacy is very important as we are working with sensitive medical
data to evaluate compatibility between pairs. To include data privacy, we design and im-
plement a Privacy-Preserving Kidney Exchange Protocol using secure computation techniques.

The first Kidney Exchange Programme was established in 2004 in the Netherlands [KKC+05]
where the waiting time for kidneys from deceased donors was around 4 to 5 years which is
too long for patients with severe kidney failure. After initial successes, more Kidney Exchange
Programmes were introduced in Europe [BHA+18] and even international Kidney Exchange
Programmes were introduced [BFS+17]. In most existing European Kidney Exchange Pro-
grammes, there are about 50 to 300 participating pairs and the Programmes are run about
every three months [BGM+20].

16

3 Related Work

3.1 Non Privacy-Preserving Solutions

In Kidney Exchange Programmes it is possible that exchange cycles (cf. Subsection 2.3.2) fail
after calculating an initial solution. One reason might be that a donor withdraws from the
exchange as their recipient already has received a compatible kidney through other means
or the recipient dies and the donor does not want to donate their kidney anymore. Another
reason can be that a previously compatible deemed match is considered incompatible after
further medical examination. This can happen due to the fact that the compatibility between
pairs is first assessed virtually on an algorithmic base which cannot consider all criteria in
full depth. Only after a possible exchange cycle has been found, the pairs are assessed by
specialists to make sure that they are possible.
Those localised problems concerning only one pair propagate through the cycle and lead to
its complete disruption [CKG+20].

3.1.1 Robust Models for the Kidney Exchange Problem

Carvalho et al. [CKG+20] present approaches to make Kidney Exchange Programmes more
robust by considering possible failure modes. They propose three policies that allow to
contain failing edges within the compatibility graph (cf. Subsection 2.3.2).
The first policy is called Simple Recourse. This policy allows to take cost (or missed gains) of
planned transplants that do not proceed into account. This approach does not enable the
recovery failing of exchange cycles to be recovered, but it allows better decisions regarding
the global solution as failure is explicitly taken into account.
The second approach is called Back-Arcs Recourse. This policy allows part of a failing exchange
cycle to be recovered, if the remaining pairs in the cycle can exchange their kidneys among
themselves. This policy only considers the pairs that were part of the original, failing
exchange cycle.
The third policy they introduce is called Full Recourse. This policy allows for a complete
recovery of failing exchange cycles by using alternative pairs, thus replacing the failing parts.

The presented approaches are all implemented using integer linear programming which is
already very computationally costly in itself. Thus, translating these implementations of
the policies directly into an efficient SMPC implementation is not trivial. However, their

17

3 Related Work

work shows the importance of robustness in solutions for the Kidney Exchange Problem,
which is why we decided to consider robustness in a different, more computationally feasible
way, by including more biomedical factors (cf. Subsection 2.1) to decrease the possibility
of failing medical specialist assessments. In addition, we suggest to use smaller cycle sizes,
e.g., cycles of size two or three, to reduce the damage caused by withdrawing pairs [BKM+21].

3.1.2 Medical Analysis for Evaluating Compatibility in Kidney Exchange

A 2017 study by Ashby et al. [ALR+17] examines the importance of various medical factors
leading to a calculator for determining medical compatibility in kidney exchange.

The study takes 232 705 kidney-alone transplantation from 1998 to 2012 into account,
where the kidney transplants stem from the Scientific Registry of Transplant recipients,
which includes data on all donors, wait-listed candidates, and transplant recipients in the
United States. The transplantation can be divided into three donor types: living related
donors, where the donor and recipient have a biological relationship with one another, living
unrelated, and deceased donors. Those three types were analysed separately. For their
analysis they considered age, sex, obesity status (body mass index greater than 30), weight
ratio, height ration, HLA mismatches (cf. Subsection 2.1.1) and ABO compatibility (cf. Sub-
section 2.1.2).

The risk calculator developed by the studies authors helped determining the leading high-
impact factors used in this work.

18

3 Related Work

3.2 Privacy-Preserving Solutions

Most approaches solving the Kidney Exchange Problem do not consider privacy of the
recipient’s and donor’s medical data. However, due to the sensitive nature of medical data,
it is essential to consider privacy. Breuer et al. [BMWM20] and [BMW22] are the first
approaches to consider data privacy in Kidney Exchange Problems.

3.2.1 A Privacy-Preserving Protocol for the Kidney Exchange Problem

The protocol presented by Breuer et al. [BMWM20] is the first privacy-preserving solution
for the kidney exchange problem. Their approach is based on Homomorphic Encryp-
tion (HE), to be more precise, on a threshold variant of the Paillier Cryptosystem and
SMPC (cf. Subsection 2.2.1). For the determination of compatibility, they consider HLA cross
matching (cf. Subsection 2.1.1) and ABO compatibility (cf. Subsection 2.1.2).

They publicly precompute the set of all exchange constellation graphs that are graphs which
contain only disjoint exchange cycles (cf. Subsection 2.3.2) up to a given cycle length. They
limit the length of cycles up to 3 due to the fact that the transplants within an exchange cycle
are carried out simultaneously [FPS00]. This mitigates the risk that donors withdraw from
the exchange after their incompatible recipient received another kidney. In addition, a lot of
medical staff and other resources are required to carry out a transplantation which limits the
number of transplants that can be carried out simultaneously.

In their protocol, the participating parties jointly compute the adjacency matrix which
represents the compatibility graph (cf. Subsection 2.3.2) for the participating pairs. The
graph is evaluated by determining compatibility between every donor and recipient of each
pair. A donor and recipient of different pairs are deemed compatible if their HLA cross match
is negative and they are ABO compatible. After that they evaluate the adjacency matrix by
comparing it to the known sets of exchange constellation graphs to determine which of the
exchange constellation graphs are potential solutions. Out of all the potential exchange
constellation graphs the graph with the most edges is chosen. If there are several potential
exchange constellation graphs, then one is chosen randomly. The selected graph will be
returned as the solution.

The run-time of their protocol scales exponentially with the number of parties, i.e., pairs,
that participate in the protocol. For two parties, the run-time is about 14 seconds, for four
parties the run-time is about 44 seconds, for eight parties the run-time is about two hours,
and for nine parties the run-time is already 13 hours. A higher number of parties was not
evaluated in their work. This shows that the presented protocol by Breuer et al. [BMWM20]

19

3 Related Work

is not feasible for a larger number of pairs, thus making it not feasible for real-world Kidney
Exchange Programmes (cf. Subsection 2.3.2).

Our solution improves the run-time performance 30000-fold for 9 pairs (cf. Section 5.3 by
avoiding performance impending HE techniques and is implemented using highly optimised
hybrid SMPC circuits (cf. Subsection 2.2.2). In addition, we have a better medical evaluation
of the medical compatibility of donors and recipients.

3.2.2 Privacy-Preserving Maximum Matching on General Graphs and its
Application to Enable Privacy-Preserving Kidney Exchange

Breuer et al. [BMW22] present an improved privacy-preserving protocol for crossover kidney
exchange, which claims to be the first to have polynomial computational complexity. They
(re-)implement their new protocol and the protocol presented in [BMWM20] in the SMPC
framework MP-SPDZ [Kel20] and establish their new protocol in a dynamic setting where
pairs are added and removed over time. Similar to the protocol in [BMWM20], their new
protocol is secure against semi-honest adversaries but avoids the usage of HE. For the
data aggregation, they use an outsourcing data model (cf. Subsection 2.2.3) with three
computing parties and passive security.

In a crossover kidney exchange two pairs, each consisting of a recipient and a donor, exchange
their kidney. Thus, crossover exchanges are essentially exchange cycles of size two. Therefore,
their new work only allows the computation of exchange cycles of length two, where their
previous work [BMWM20] allowed for exchange cycles of arbitrary length. By limiting the size
of cycles, they achieve a significant performance boost over their previous work [BMWM20].

Their protocol consists of six phases. In the first phase, they initialise the compatibility graph.
The computation of the compatibility between pairs is based on the same biological criteria as
in their previous work, i.e., HLA cross matches (cf. Subsection 2.1.2) and ABO compatibility.
For their graph generation, they use the same protocol as in [BMWM20], however, they
implemented it in MP-SPDZ for enhanced performance. The second to fifth phase work on
the computation of exchange cycles which is based on the matching algorithm by Pape and
Conradt [PC80] which has an asymptotic complexity of O(|V |3) where V denotes the number
of vertices.

For the performance evaluation of their protocols, they used an AMD EPYC 7702P 64-core
processor as a host for virtual input and computing peers. For each peer, they used a container
running on Ubuntu 20.04 LTS with 4GB RAM and one core of the aforementioned processor.
They tested their protocols on a 1GB per second bandwidth with varying latencies ranging
from one to ten milliseconds. In comparison with their previous work [BMWM20], they are
able to compute up to 64 pairs depending on the network setting. While the run-time of the

20

3 Related Work

previous approach [BMW22] scaled exponentially with the number of pairs, this one scales
polynomial with the number of pairs. Thus, their new protocol outperforms their old version
by several orders of magnitude. However, their new approach is specialised on the compu-
tation of cycles of length but two, while their previous work allowed for arbitrary cycle lengths.

In addition to the design and implementation of their protocol [BMWM20], they establish
their protocol in a dynamic setting where pairs come and go over time, e.g., due to receiving
kidneys. In their dynamic setting, they have a pool of pairs where new pairs are added or old
pairs removed from. They benchmark different arrival rates, i.e., time intervals after which
new pairs are added to the pool. In addition, they test their approach for different match run
intervals, i.e., time intervals after which the protocol is executed again. Before they execute
their protocol, they randomly select a fixed subset of pairs to compute their compatibility
graph. All pairs that have received a match are removed from the pool so that they won’t be
considered in future runs of the protocol. The removal and addition of new pairs results in
an update of the compatibility graph. Their results have shown that their approach is very
well suited for a dynamic setting.

3.2.3 Secure Graph Analysis at Scale

A recent work by Araki et al. [TAF+21] presents a highly scalable secure computation
methodology for graph analysis. It hides all information on the topology of the graph, and the
values associated with vertices and edges. It runs in a 3 server setting with either semi-honest
or malicious security. One of their major contributions to efficiency is that they replaced
secure sort operations with secure shuffles.

Their work is based on the GraphSC framework [TAF+21], which is a framework for
message-passing algorithms in a secret-shared setting. Given a secret-shared directed graph
G(V, E), GraphSC enables the usage of message-passing algorithms on this secret shared
graph. In message-passing algorithms, in each round all vertices send messages over their
outgoing edges, and receive messages on their incoming edges. They update their state
according to the received information. A round in a message-passing algorithm consists
of each vertex sending and receiving messages, and updating accordingly. A current use
case for these algorithms are contact tracing such as a COVID-19 contact graph [TAF+21].
Araki et al. [TAF+21] focus on the breadth-first search (BFS) and maximal independent set
(MIS) algorithms. All of their protocols can be used for semi-honest and malicious adversaries.

Their results show that BFS and MIS scale linearly in the number of vertices, which is
very good. Especially, BFS might be an interesting approach to analyse compatibility
graphs (cf. Subsection 2.3.2) in regards to existing cycles. However, we have not considered

21

3 Related Work

this approach in our work as it is not trivial to combine BFS with the rest of our proto-
cols. This is a topic to further look into in another work.

3.2.4 Privacy-Preserving Linear Programming

As the approach of Carvalho et al. [CKG+20] showed, it is possible to use Integer Linear
Programming (ILP) to solve the kidney exchange problem in a more robust manner. However,
ILP is very expensive in itself and, therefore, cannot be trivially translated into a privacy-
preserving setting. However, Linear Programming (LP) is less complex compared to ILP as
it does not have the additional constraint that values have to be integers. One common
algorithm in LP is the simplex algorithm which was implemented in a privacy-preserving
way in [Tof09]. While the implementation provides information-theoretic security, it is too
slow to be used in real-world applications because the values in the table representation
of the coefficients of the constraint equations (tableau) grow too large during the initial
iterations of the algorithm. An improved privacy-preserving variant of the simplex algorithm
was implemented in [CH10] using fixed-point arithmetic. They circumvent the drawback
of [Tof09] by using smaller tableaux which decreases the run-time. However, this approach
is still only suitable for relatively small inputs due to its worst exponential worst case
complexity. Dreier et al. [DK11] introduce an approach to improve the run-time performance
of privacy-preserving LP solutions by using privacy-preserving problem transformations to
reduce the size of the problem. Their approach is significantly faster than the works of [Tof09;
CH10]. The use of privacy-preserving LP and ILP to solve the kidney exchange problem in a
more robust manner is an interesting topic to look further into in another work.

22

4 Design and Implementation

In this chapter, we describe the privacy-preserving kidney exchange problem and introduce
our Efficient Privacy-Preserving Kidney Exchange Protocol (EPPKEP). Our protocol consists of
four parts each requiring the outputs of the previous parts while being separately executable,
as interim results can be reused. Additionally, designing the parts to be able to be executed
separately saves memory. Figure 4.1 gives a high-level overview of our EPPKEP. In the first
part of our protocol, we compute the weighted compatibility graph which encodes the pair-
wise compatibility of each donor-recipient pair-combination. Using this compatibility graph,
the second part computes the number of exchange cycles that exist in the compatibility graph,
i.e., the donor-recipient pairs who can potentially engage in kidney exchange. The third part
computes all cycles and removes the found duplicates. The fourth and last part of our EPPKEP
constructs sets of disjoint exchange cycles, i.e., each donor-recipient pair is part of at most
one exchange cycle, and finally outputs the most robust set. The solution set of exchange
cycles is the set with the highest likelihood that most transplants are successful. Note that we
compute a locally optimal solution and not the global optimum. As each part of protocol can
be executed independently, it is also possible to use it in a dynamic setting in which pairs are
dynamically added and removed similar to the protocol of [BMW22] (cf. Subsection 3.2.2).

Compatibility Matching

0 1 0 4 0 1

2 0 0 0 0 0

0 4 0 0 3 0

0 2 0 0 0 1

0 2 0 1 0 0

0 1 0 0 4 0

Cycle Computation

Cycle EvaluationSolution Evaluation

1) 2)

4) 3)

IDs

IDs

IDs

Figure 4.1: High-level overview of our EPPKEP.

23

4 Design and Implementation

4.1 Problem Statement

In Figure 4.2, we show the ideal functionality for solving the kidney exchange problem in a
privacy-preserving way. Although it is unrealistic, we assume that a Trusted Third Party (TTP)
is available. After receiving the medical health information of the donor-recipient pairs from
medical institutes, the TTP calculates exchange cycles (cf. Section 2.3.2). The TTP outputs a
set of disjoint exchange cycles that represents a local maximum with respect to the weight of
the exchange cycles in the set, i.e., the set has a high probability of transplantation success.
Each donor-recipient pair that is part of an exchange cycle receives information on the other
donor-recipient pairs that are part of the same exchange cycle, i.e., the donor-recipient pairs
they are potentially compatible with.

Our EPPKEP must realise the same functionality as the ideal functionality. However, as the
existence of a TTP is unrealistic, it has to achieve the same functionality without relying
on a TTP. Further, our protocol must achieve efficient communication cost and run-time
performance such that it provides feasible run-time on standard server hardware. In order
to protect the highly sensitive medical data of the donor-recipient pairs, we require our
EPPKEP to be decentralised such that the plain-text medical health information of each pair
is only stored locally at the respective medical institution. Additionally, it must offer high
flexibility and adaptability for medical experts with respect to the selection of the biomedical
factors and weighing the individual importance of the factors for evaluating the medical
compatibility between donors and recipients. Lastly, our EPPKEP must be easily extendable to
new biomedical factors and customise the considered HLA to adapt to new changes in research.

Note that our EPPKEP does not replace the evaluation of medical experts, so even when a
donor and recipient are deemed compatible and exhibit a good likelihood for their exchange
being carried out, medical experts must manually evaluate the match before proceeding. In
general, the final decision is always in the hands of medical experts. The goal of our EPPKEP
is to automate and, thus, accelerate the process of finding possible exchange cycles while
preserving privacy.

24

4 Design and Implementation

IDs

IDs

IDs

TTP

Figure 4.2: The ideal functionality for a privacy-preserving KEP [BHK+22].

4.2 Notation

In the following, we use the notation for secret shared values introduced in Subsection 2.2.2.
In addition, we use the logical operators ∧, ∨, and ¬ to denote AND gates, OR gates, and
Not gates respectively. In the corresponding SMPC protocols, we use the ternary operator
condition ? true statement : false statement to denote Multiplexer (MUX) gates. The con-
version into different sharing types is denoted as a2b for a conversion from Arithmetic
Sharing (A) to Boolean Sharing (B) and b2a for a conversion from Boolean sharing to
Arithmetic Sharing.

4.3 Compatibility Matching

First, we introduce the full protocol for the first part of our EPPKEP and show how each of
the protocols for the medical factors are connected (cf. Subsection 4.3.1). After that, we
introduce the sub-protocols that are used in the first part. We determine whether a donor and
a recipient are compatible by performing a Human Leukocyte Antigen (HLA) cross-match
(cf. Subsection 4.3.2). After determining a general compatibility, we further evaluate the
probability of a compatible transplant being successfully carried out by including additional
medical factors, i.e., HLA mismatches (cf. Subsection 4.3.3), ABO compatibility (cf. Sub-
section 4.3.4), age (cf. Subsection 4.3.5), sex (cf. Subsection 4.3.6), and the participants’
weight (cf. Subsection 4.3.7). The result of our first part is a compatibility graph, which
is used in the following two parts. Lastly, in Subsection 4.3.8, we show the asymptotic

25

4 Design and Implementation

complexities for the introduced protocols.

By parameterising the weight of the individual factors’ contribution, we allow medical
experts to adapt the matching process to changes or new advances in the medical field or to
situational constraints. This allows to highlight or even exclude some or even all of the addi-
tional factors for each run of the protocol, so that situational irrelevant information is excluded.

4.3.1 Overview

In this subsection, we give an overview of all the protocols presented in the first part,
Compatibility Matching, of our EPPKEP and how we construct our compatibility graph (cf. Sub-
section 2.3.2).
The most important factor to determine a general compatibility is the HLA cross-match (cf. Sub-
section 4.3.2). The further sub-protocols are necessary for pairs that have been deemed
compatible in Subsection 4.3.2 and evaluate the compatibility quality between compatible
pairs such that pairs with a high compatibility receive a higher weight. However, to avoid
leaking any information on compatibility, we evaluate the sub-protocols for every combination
of pairs.

Additionally, we introduce a vector weight ∈ N5 as an input for our main protocol of part 1
which can be used to weight the individual biomedical factors to better adapt the current
medical guidelines. We leave the choice of appropriate weight values to medical experts.

Tables 4.1 and 4.2 list the attributes of each donor and recipient. Each pair consists of a
donor and a recipient. The medical data of the donor and recipient of a pair can be accessed
with pair.d and pair.r, respectively.

Table 4.1: Overview of the attributes of a donor that are required to determine compatibility.

Attribute Short Definition

hla Encodes the HLA of a donor.
bg Encodes the blood group of a donor.
age Encodes the age of a donor.
sex Encodes the sex of a donor.

weight Encodes the body mass of a donor.

26

4 Design and Implementation

Table 4.2: Overview of the attributes of a recipient that are required to determine compati-
bility.

Attribute Short Definition

hla Encodes the HLA of a recipient.
ahla Encodes the HLA antibodies of a recipient.
bg Encodes the blood group of a recipient.
age Encodes the age of a recipient.
sex Encodes the sex of a recipient.

weight Encodes the body mass of a recipient.

Protocol 4.1 computeCompatibilityGraph(〈pairs〉B: vector of pairs, 〈weights〉A: vector of
integers)→ 〈weightedadjacencymatrix〉A

1: 〈compG〉A← matrix{〈0〉A}|pairs|×|pairs|

2: for i = 0, . . . , |pairs| − 1 do
3: for j = 0, . . . , |pairs| − 1 do
4: if i == j then
5: 〈compG〉A[i][j]← 〈0〉A

6: else
7: d ← 〈pairs〉B[i].d
8: r ← 〈pairs〉B[j].r
9: 〈edge_w〉A← 〈1〉A+

〈weights〉A[0] · b2a(evalHLA(〈d.hla〉B, 〈r.hla〉B))+ ▷ Sub-protocol 4.3
〈weights〉A[1] · b2a(evalABO(〈d.bg〉B, 〈r.bg〉B))+ ▷ Sub-protocol 4.4
〈weights〉A[2] · b2a(evalAge(〈d.age〉B, 〈r.age〉B))+ ▷ Sub-protocol 4.5
〈weights〉A[3] · b2a(evalSex(〈d.sex〉B, 〈r.sex〉B))+ ▷ Sub-protocol 4.6
〈weights〉A[4] · b2a(evalWeight(〈d.weight〉B, 〈r.weight〉B)) ▷ Sub-protocol 4.7

10: 〈sel〉B ← match(〈d.hla〉B, 〈r.ahla〉B) ▷ Sub-protocol 4.2
11: 〈compG〉A[i][j]← b2a(〈sel〉B ? a2b(〈edge_w〉A) : 〈0〉B)
12: end if
13: end for
14: end for
15: return 〈compG〉A

In Protocol 4.1, we compute the compatibility graph. Given the participating pairs and the
weights of each medical factor, we evaluate the sub-protocols for each medical factor and
multiply the result with the respective weight.
It takes a secret shared vector pairs containing the medical information of all participating
donor-recipient pairs and a secret shared vector weights which contains weights for each
of the biological criteria except the HLA cross-match, i.e., how much it influences the
overall likelihood for good compatibility compared to the other factors as input. The vector

27

4 Design and Implementation

weights allows medical experts to highlight certain factors or even exclude factors entirely if
necessary. In Line 9, we compute the sum over all weighted biological factors, except the HLA
cross-match. Afterwards, we check whether the current donor and recipient have a general
medical compatibility by performing a HLA cross-match (cf. Protocol 4.2). If they have a
general compatibility, we set the weight of the respective edge to the weight, otherwise we
set it to 0 (cf. Line 11).
SMPC Cost. To run the complete matching process, all criteria have to be evaluated for
each donor-recipient pair, i.e., Sub-protocols 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 are run |pairs|2

times. Then, in Protocol 4.1, we additionally evaluate five multiplications, five additions, one
comparison, one AND gate, and one MUX gate. As discussed in the respective subsections,
the compatibility evaluation sub-protocols are done in Boolean Sharing (B). At the end, we
convert the weight to Arithmetic Sharing (A) to efficiently realise additions and multiplica-
tions. Using the protocols of ABY2.0 [PSSY21], the online communication could be reduced
from 3× ℓ2 + 24× ℓ+ 2× ℓ× κ to 23× ℓ+ ℓ× κ in every iteration (without considering the
sub-protocols) where ℓ denotes the length of the values and κ denotes the security parameter.

4.3.2 HLA Cross-Match

Given several pairs of incompatible donors and recipients, we first compute whether there
exists a general immunological compatibility between some pairs based on the HLA. One
of the most important approaches to do so is a HLA cross-match (cf. Subsection 2.1.1).
The HLA we consider are listed in Table 2.1. The number of HLA is determined by the
public parameter |HLA| which is per default set to 50 according to the observed HLA by
Eurotransplant [Eur21d]. However, medical experts are free to add or remove HLA by
altering the number of considered HLA.

We now encode the HLA and the corresponding antibodies for each donor and recipient
as Boolean vector hla ∈ {0, 1}|H LA|, for which each index encodes a different HLA. The
number of HLA we account for is denoted by |HLA|, which is a publicly known parameter. If
an entry is 1, the recipient possess the HLA which is encoded by the respective index. For
recipients, we encode the HLA antibodies as a Boolean vector ahla ∈ {0,1}|HLA|, using the
same encoding as in hla. If an entry of ahla is 1, the recipient possesses an antibody against
the respective HLA. The HLA antibodies of the donors are not stored since they are not
relevant for kidney transplantation.

We show the general compatibility algorithm of a donor and a recipient:

28

4 Design and Implementation

Sub-protocol 4.2 match(〈hlad〉B: vector, 〈ahlar〉B: vector)→ 〈int〉B

1: 〈comp〉B ← {〈0〉B}|HLA| ▷ vector with result of each HLA comparison.
2: for i = 0, . . . , |HLA| − 1 do ▷ SIMD
3: 〈comp〉B[i]← 〈hlad〉B[i]∧ 〈ahlar〉B[i]
4: end for
5: 〈combined〉B ← 〈0〉B

6: for i = 0, . . . , |HLA| − 1 do
7: 〈combined〉B ← 〈combined〉B ∨ 〈comp〉B[i]
8: end for
9: return ¬〈combined〉B

The HLA cross-match is shown in Sub-protocol 4.2 in which we determine general compati-
bility between donors and recipients. The number of observed HLA |HLA| is publicly known
and the same for each donor and recipient. A vector comp stores whether the recipient
possesses an antibody against any of the donor’s HLA (cf. Line 3). For enhanced efficiency, we
parallelise the cross-match comparison as a Single instruction, multiple data (SIMD) operation
such that all HLA matches of one recipient are computed in just one step. If there was any
positive match, the pair is marked as not compatible in comp (cf. Line 7), by combining the
cross-match status of each HLA with bit-wise conjunctions. To prepare for further processing,
we invert the result of the HLA cross-match in Line 9.
SMPC Cost. In Line 3, we evaluate |HLA| × AND gates (as SIMD). In Line 9, we evaluate
|HLA| ×OR gates, which can be created using three XOR gates and one AN D gate for each
OR gate1. Finally, we invert combined once, which can be realised using an XOR gate. The
circuit depth is, therefore, |HLA|+ 1 and the total number of AND gates is 2× |HLA|. To be
most efficient, we use Boolean sharing (B) for this protocol considering the type of operations
(i.e., Boolean) and the increased efficiency thanks to our SIMD optimisation [DSZ15].
Note that Lines 6 to 8 can be computed as a tree to significantly reduce the depth of the
circuit to log2(|HLA|) + 12.

4.3.3 HLA Matching

After testing the general compatibility, more medical factors are evaluated to estimate the
compatibility quality, i.e., evaluating positive and negative influences on allograft survival
chances. After the determination of general compatibility between a donor and a recipi-
ent (cf. Section 4.3.2), we further evaluate all pairs for kidney transplantation by including
more factors that influence allograft survival, i.e., increase the chance of a successful
transplantation. Beyond HLA antibodies, we now compare the HLA of each donor and
recipient (cf. Section 2.1.1). In contrast to the HLA cross-match, where antibodies and

1A∨ B ⇐⇒ 1⊕ ((1⊕ A)∧ (1⊕ B))
2The benchmarks were conducted without this optimisation.

29

4 Design and Implementation

antigens presence are compared, we now compare the sets of considered antigens on both
donor and recipient, as Opel et al. [OD12] show that allograft survival chances decrease with
an increasing number of HLA mismatches (cf. Subsection 2.1.1). The following four groups
can be derived from the results of [OD12]:

Perfect: no HLA mismatches
Good: 1-2 HLA mismatches
OK: 3-4 HLA mismatches
Bad: 5 or more HLA mismatches

This analysis uses the same Boolean vector encoding of the participants’ HLA as described in
Subsection 4.3.2.

We determine the result of the HLA match and place them into one of the previously defined
groups with respect to the number of mismatches:

...Perfect, if sum is equal to 0, we return the value encode by the variable A.

...Good, if sum is greater than 0 but less than 3, we return B.

...OK, if sum is greater than 2 but less than 5, we return C .

...Bad, if sum is greater than 4, we return 0.

Sub-protocol 4.3 evalHLA(〈hlad〉B: vector of Boolean, 〈hlar〉B: vector of Boolean)→ 〈int〉B

1: 〈mm〉B ← {〈0〉B}|HLA| ▷ This list represents the number of mismatches
2: for i = 0, . . . , |H LA| − 1 do ▷ SIMD
3: 〈mm〉B[i]← 〈hlad〉B[i]⊕ 〈hlar〉B[i]
4: end for
5: 〈sum〉B ← Hamming(〈mm〉B) ▷ Compute Hamming Weight.
6: 〈ok〉B ← 〈sum〉B < 〈5〉B

7: 〈good〉B ← 〈sum〉B < 〈3〉B

8: 〈perfect〉B ← 〈sum〉B == 〈0〉B

9: return 〈perfect〉B ? 〈A〉B :
�

〈good〉B ? 〈B〉B :
�

〈ok〉B ? 〈C〉B : 〈0〉B
��

In Sub-protocol 4.3, we further evaluate the compatibility quality by comparing the HLA of
donors and recipients.
It takes two vectors hlad and hlar with the HLA antigens of the donor and recipient respectively
as input. The number of |HLA| is public as it is configurable. The vector mm indicates the HLA
mismatches of the donor and the recipient. A mismatch occurs if either donor or recipient
has a HLA antigen that the other does not have (cf. Line 3). For enhanced efficiency, we
parallelise the comparison as SIMD operation such that the vector mm is computed in a single
step. Afterwards, the number of HLA mismatches is determined with a Hamming Weight

30

4 Design and Implementation

Circuit (cf. Line 5). Based on the number of mismatches, the protocol outputs an indicator for
the quality of the pairing w.r.t. the HLA antigens: Class A is an optimal fit with no mismatches,
class B is a good fit, and class C is an acceptable fit with 3-4 mismatches (cf. Line 9).
SMPC Cost. To compute the HLA match, we compare the HLA vectors of a donor and recipient
entry-wise and aggregate all 〈hlad〉B ̸= 〈hlar〉B into a sum by computing the Hamming Dis-
tance between the bit-field containing the differences and a zero bit-field. Thus, |HLA| XOR

gates as SIMD and one computation of the Hamming Weight Hamming(mm) are performed.
We use the protocol from Bringer et al. [BCF+14] to compute the Hamming Weight. It has
2×|HLA|×log2(ℓ)

o + 3× ℓ computation complexity and ℓ× (|HLA| × log2(ℓ) + κ) communication
complexity where ℓ denotes the bit length, κ denotes the symmetric security parameter, and
o denotes the size of the output of a pseudo-random function.
Line 3 in Sub-protocol 4.3 evaluates |HLA| × XOR gates (as SIMD). Line 5 evaluates one
Hamming Weight Protocol. Lines 6 to 9 contains three comparison and three MUX gates.
Thus, the circuit depth is 7, which is equal to the number of AN D gates. At first glance
using Yao’s Garbled Circuits (Y) seems to be most efficient. However, considering that
Sub-protocol 4.2 is done in B sharing, the conversion cost outweigh the benefits of using Y
instead of B, thus, B is used here as well.

4.3.4 Blood Type Matching

Another factor we include to further evaluate the compatibility between pairs is ABO compat-
ibility (cf. Subsection 2.1.2).

In order to determine ABO compatibility between donors and recipients, we encode the
blood group of each donor and recipient as two bit values bg ∈ [0,1]2 shown in Table 4.3.
All compatible donations in terms of ABO compatibility are listed in Table 2.2.

Table 4.3: Encoding of the different blood groups.

Encoding Blood Group

00 O
01 A
10 B
11 AB

In this encoding, the donor and recipient are compatible if either of two conditions are true:
First, a donor and recipient are ABO compatible if they share the same blood group:

¬
�

�

bgr[0]⊕ bgd[0]
�

∨
�

bgr[1]⊕ bgd[1]
�

�

(1)

31

4 Design and Implementation

Secondly, a donor and recipient are ABO compatible if the least significant bit (LSB) of the
donor is greater than the most significant bit (MSB) of the recipient and vice versa:

�

�

bgr[1]∧¬bgd[0]
�

∨
�

bgr[0]∧¬bgd[1]
�

�

(2)

In case of ABO compatibility, we return the value encoded as bestabo, otherwise we return 0
because ABO incompatibility does not increase the likelihood of a transplantation being
successful, i.e., it does not increase the survival chances of the recipient . Note that bestabo

is variable and can be configured depending on the importance of ABO compatibility in
varying settings.

Sub-protocol 4.4 evalABO(〈bgd〉B : vector, 〈bgr〉B : vector)→ 〈int〉B

1: 〈a〉B ←¬
�

�

〈bgr〉B[0]⊕ 〈bgd〉B[0]
�

∨
�

〈bgr〉B[1]⊕ 〈bgd〉B[1]
�

�

2: 〈b〉B ←
�

〈bgr〉B[1]∧¬〈bgd〉B[0]
�

∨
�

〈bgr〉B[0]∧¬〈bgd〉B[1]
�

3: 〈sel〉B ← 〈a〉B ∨ 〈b〉B

4: return 〈sel〉B ? 〈bestage〉B : 〈0〉B

Sub-protocol 4.4 describes the ABO compatibility test.
It takes two two-bit vectors as input: bgd ∈ {0,1}2 is the blood group of the donor and
bgr ∈ {0,1}2 is the blood group of the patient. We compute the ABO compatibility by
computing an OR gate (Line 3) of Equation (1) (Line 1) and Equation (2) (Line 2).
SMPC Cost. We evaluate 3 Not gates, 2 XOR gates, 2 AND gates, 3 OR gates and one MUX

gate. OR gates and Not gates can be realised in terms of XOR and AND gates as mentioned in
Subsection 4.3.2. Thus, we evaluate in total 14 XOR gates and 6 AND gates. The depth of the
circuit is 4 which is less than the total number of AND gates. Hence, this protocol is most
efficient using B.

4.3.5 Age Matching

HLA cross-matching, HLA matching and ABO compatibility are the most common and most
impactful factors when it comes to kidney transplantation survival. However, there are
other factors that have shown to impact the outcome of transplantation. One of them is
the age of the donors and the recipient (cf. Subsection 2.1.3). Based on the results of
Waiser et al. [WSB+00], we create two age groups (cf. Subsection 2.1.3) junior (age < 55)
and senior (age ≥ 55) and encode the group each donor and recipient belong to in the variable
age. If a person belongs in the junior group, age is set to 0. If they belong in the senior
group, age is set to 1. We can place a donor-recipient pair into one of the following three
categories and return the weight associated with their respective age-group. The categories
are derived from the information mentioned in Subsection 2.1.3:

32

4 Design and Implementation

Same-Group: This category contains possible transplantation between donors and
recipients in the same age category, i.e., aged == ager → return bestage.

Junior-Senior: This category contains transplantation from young donors to old recipi-
ents, i.e., aged < ager → return goodage.

Senior-Junior: The last category contains transplantation from old donors to young
recipients, i.e., aged > ager → return 0.

Note that, the Same-Group and the Junior-Senior Group have similar results [WSB+00],
however, to avoid that young recipients receive less kidneys as old recipients have the same
benefit from young donors, we weigh the Same-Group slightly more than the Junior-Senior.
We return 0 as weight for the Senior-Junior group because kidney transplantation between
old donors and young recipients do not increase the likelihood of the transplantation being
successful, i.e., it does not increase the survival chances of the recipient.

Sub-protocol 4.5 evalAge(〈aged〉B: int, 〈ager〉B: int)→ 〈int〉B

1: 〈same〉B ← 〈aged〉B == 〈ager〉B

2: 〈ydor〉B ←¬〈aged〉B ∧ 〈ager〉B

3: return 〈ydor〉B ?
�

〈same〉B ? 〈bestage〉B : 〈goodage〉B
�

:
�

〈same〉B ? 〈bestage〉B : 〈0〉B
�

In Sub-protocol 4.5, we evaluate the age compatibility of donors and recipients weight.
It takes the age groups aged and ager of the donor and the recipient respectively as input.
In Lines 1 to 2, we evaluate the category of the donor and recipient according to their age
groups. The variable same contains the information whether a donor and recipient are of
the same age, and ydor contains the information on whether the donor is younger than
the recipient. Afterwards, we compute the respective weight of this donor and recipient
constellation. (cf. Line 3).
SMPC Cost. Sub-protocol 4.5 contains one comparison, one inversion, one AND gate, and
three MUX gates. Since Lines 1 to 2 are independent of each other, as well as the two MUX

gates in Line 3, they can be evaluated in parallel. Thus, this sub-protocol is slightly more
efficient in B than in Y since the amount of AND gates is greater than the depth of the circuit.

4.3.6 Sex Matching

The sex of recipient and donor impacts the outcome of a transplantation survival (cf. Sub-
section 2.1.4). For that reason we encode the sex of each donor and recipient in a variable
sex. In the scope of this work, we encode the sex as follows: If a recipient is female, sex

is set to 1, otherwise sex is set to 0. We will not consider intersex, since, to the best of our
knowledge, there are no studies on the outcome of kidney transplantation which consider
intersex people as well.

33

4 Design and Implementation

We place donors and recipients into one of the following groups based on their sex [ZCH+12]:
Sex Matches:

Same-Sex: This group contains donors and recipients of the same sex. In this case, we
return bestsex.

Male-Female: This group contains male donors and female recipients. We return goodsex.
Female-Male: This group contains female donors and male recipients. We return 0.

Sub-protocol 4.6 evalSex(〈sexd〉B: int, 〈sexr〉B: int)→ 〈int〉B

1: 〈same〉B ← 〈sexd〉B == 〈sexr〉B

2: 〈fdmr〉B ← 〈sexd〉B ∧¬〈sexr〉B

3: return 〈fdmr〉B ?
�

〈same〉B ? 〈bestsex〉B : 〈0〉B
�

:
�

〈same〉B ? 〈bestsex〉B : 〈goodsex〉B
�

In Sub-protocol 4.6, we compute the weight of the sex of donor and recipients.
It takes two secret shares sexd and sexr as input which represent the sex of the donor and
recipient, respectively. In Lines 1-2, we compute the group of a match. We store the results in
the variables same, which corresponds to the Same-Sex group, and fdmr, which corresponds
to the male donor/female recipient group. As a final step, the output weight of this donor
and recipient constellation is computed, i.e., the optimal combination (bestage) with equal
sex receives the highest weight, while a female donor and a male recipient are assigned the
lowest weight (0).
SMPC Cost. We evaluate one comparison, one Not gate, one AND gate, and three MUX gates.
Lines 1 to 2 are independent as well as the two MUX gates in Line 3 are independent. Thus,
the circuit depth is 3 while the number of AND gates is 5. Therefore, Sub-protocol 4.6 is
slightly more efficient in B than in Y. Thus, we use B for this sub-protocol.

4.3.7 Weight Matching

As a last factor, we consider the weight (cf. Subsection 2.1.5) of recipients and donors. We store
the information about the body mass in the variable weight for each donor and each recipient.

We put each pair of donor and recipient into one of the following two groups [MKA+17;
EHB+03] based on the difference of their weights:

Fitting Weight: The weight of the donor is greater or equal to the weight of the recipi-
ent’s kidney. We return goodweight.

Unfitting weight: The weight of the donor is smaller than the weight of the recipient.
We return 0.

34

4 Design and Implementation

Sub-protocol 4.7 evalWeight(〈weightd〉B: int, 〈weightr〉B: int)→ int

1: return 〈weightd〉B < 〈weightr〉B ? 〈0〉B : 〈goodweight〉B

In Sub-protocol 4.7, we evaluate the compatibility of a donor and recipient based on their weight.
It takes the secret shared weights of the donor and the recipient weightd and weightr as
input. If the donor weighs less than the recipient, the output weight is set to 0, otherwise it
is set to goodweight.
SMPC Cost. We evaluate only one comparison gate. As the evaluation of a single comparison
is more efficient in Y than in B [DSZ15], Y would be more efficient. However, the conversion
cost outweighs this benefit which is why B is used for this sub-protocol as in the previous com-
parison sub-protocols.

4.3.8 Complexity Assessment

In Table 4.4, the asymptotic complexity for the first part, the compatibility matching, is
given along with the space complexity. The most important parameters are the number of
HLA (cf. Subsection 2.1.1) |HLA| and the number of pairs |pairs|. We set |HLA| to 50 and the
number of pairs was benchmarked for |pairs| ∈ {2, . . . , 650}.

Table 4.4: Complexity Assessment of Part 1 – Compatibility Matching

Protocol Time Complexity Space Complexity

Protocol 4.1 O(|pairs|2 × |HLA|) O(|pairs|2)
Sub-protocol 4.2 O(|HLA|) O(|HLA|)
Sub-protocol 4.3 O(|HLA|) O(|HLA|)
Sub-protocol 4.4 O(1) O(1)
Sub-protocol 4.5 O(1) O(1)
Sub-protocol 4.6 O(1) O(1)
Sub-protocol 4.7 O(1) O(1)

35

4 Design and Implementation

4.4 Cycle Computation

In the second part of our EPPKEP, we determine the number of cycles that exist for the desired
cycle length. As discussed in Chapter 3, we recommend cycles with length two or three to
increase robustness and to consider the limited availability of medical staff as each exchange
comes with at least two simultaneous operations depending on the length of the cycles.
Decoupling this part from the previous one allows to compute the number of cycles of different
lengths for a given compatibility graph without recomputing the compatibility graph for every
cycle length. In addition, the result of this part, namely, the number of existing cycles including
duplicates, is used in the following parts to find and filter all existing cycles in our graph.
The cycle length cLen and the number of pairs |pairs| are a public parameters, and, thus, will
not be used as input for the following protocols. In Subsection 4.4.1, we introduce the main
protocol for the cycle computation, in subsection 4.4.2, we introduce the sub-protocol, and in
subsection 4.4.3, we give the asymptotic complexities for the introduced (sub-)protocols.

4.4.1 Overview

The number of cycles that exist for a given length can be determined by computing the respec-
tive power of the unweighted adjacency matrix. The diagonal of the resulting matrix contains
the number of cycles for each vertex. In this subsection, we introduce the main protocol for
the second part, the cycle computation, of our EPPKEP. The length of cycles is denoted as cLen.

Protocol 4.8 determineNumberCycles(〈compG〉A: matrix)→ 〈int〉A

〈compG〉B ← a2b(〈compG〉A)
〈uG〉A← computeUnweightedGraph(〈compG〉B) ▷ Sup-protocol 4.9
〈cG〉A←
�

〈uG〉A
�cLen

〈|cycles|〉A← 〈0〉A

for i = 0, . . . , |pairs| − 1 do
〈|cycles|〉A← 〈|cycles|〉A+ 〈cG〉A[i][i]

end for
return 〈|cycles|〉A

In Protocol 4.8, we compute the number of exchanges in our graph. It takes the secret shared
weighted compatibility graph compG as input. The number of pairs |pairs| and the desired
length of cycles cLen are public. We first compute the unweighted adjacency matrix in Line 1
(cf. Sub-protocol 4.9). The entries in the resulting matrix cG indicate how many paths of
length cLen start at vertex i and end at vertex j. Thus, for cycles, it holds that i == j, where
i, j ∈ {0, ..., |pairs| − 1}, i.e., the entries on the diagonal represent the number of cycles
starting and ending at any given vertex i ∈ {0, ..., |pairs| − 1}. Following this idea, the sum
of the entries of the diagonal is the total number of cycles with the given cycle length cLen.

36

4 Design and Implementation

Note that this number contains duplicates, namely, cycles that include exactly the same edges
and vertices in the same order but were found via a different start vertex3. We remove the
duplicates later in part 3 (cf. Subsection 4.5) in Sub-protocol 4.14.
SMPC Cost. Protocol 4.8 only evaluates arithmetic operations such as ADD and MUL gates,
thus, we use A. Using the improved protocols of ABY2.0[PSSY21], we could reduce the
communication from ℓ× (ℓ2 + 2× κ+ 4× |pairs|3 + 1.5) bits to ℓ× (κ+ 2× |pairs|3 + 3) bits
where el l denotes the length of the values and κ denotes the security parameter.

4.4.2 Protocols

In this subsection, we introduce the sub-protocol for computing the unweighted compatibility
graph. We compute the unweighted compatibility graph to compute the number of existing
exchange cycles in our compatibility graph in Protocol 4.8.

Sub-protocol 4.9 computeUnweightedGraph(〈compG〉B: matrix)→ 〈matrix〉A

1: 〈uG〉A← matrix ∈ (〈0〉A)|pairs|

2: for i = 0, . . . , |pairs| − 1 do
3: for j = 0, . . . , |pairs| − 1 do
4: 〈uG〉A[i][j]← b2a(〈compG〉B[i][j]> 〈0〉B ? 〈1〉B : 〈0〉B

5: end for
6: end for
7: return 〈uG〉A

Sub-protocol 4.9 takes the secret shared weighted compatibility Graph compG as input.
The number of pairs |pairs| is public. In Line 4, we check if the weight of the current entry
in compG is greater than zero. If this is the case, we set the respective entry of uG to 1.
Otherwise, we set the respective entry to 0. We repeat this for each i, j ∈ {0, . . . , |pairs| − 1}.
SMPC Cost. We evaluate |pairs|2 comparisons, MUX gates, and conversion gates, which are all
independent of each other. This sub-protocol is most efficient in B as the depth of the circuit
is smaller than the number of AND gates. Using the improved protocols of ABY2.0 [PSSY21],
we could reduce the online communication from ℓ2+ℓ

2 to 2× ℓ for each multiplication where ℓ
denotes the length of the values. Additionally, the number of online rounds could be reduced
by half.

3Cycle (A, B, C) and cycle (B, C, A) are duplicates, but cycle (C, B, A) is not.

37

4 Design and Implementation

4.4.3 Complexity Assessment

In Table 4.5, the asymptotic time and space complexity for the cycle computation is given.
The complexities depend on the public inputs |pairs| which denotes the number of pairs in
our graph and cLen which denotes the desired length of cycles.

Table 4.5: Complexity Assessment of Part 2 – Cycle Computation

Protocol Time Complexity Space Complexity

Protocol 4.8 O(cLen× |pairs|3) O(cLen× |pairs|2)
Sub-protocol 4.9 O(|pairs|2) O(|pairs|2)

38

4 Design and Implementation

4.5 Cycle Evaluation

The third part of our EPPKEP finds all cycles in the compatibility graph and extracts the
duplicates. It builds upon the results of the previous parts, i.e., the compatibility graph
compG and the number of cycles |cycles|.
The desired length of cycles cLen, the number of pairs |pairs|, the number of existing cycles
|cycles| (computed in Protocol 4.8), and the number of unique cycles |unique| = ⌊ |cycles|

cLen ⌋ are
public parameters. In Subsection 4.5.1 we give an overview of the third part of our EPPKEP,
we introduce the necessary sub-protocols in Subsection 4.5.2, and in Subsection 4.5.3, we
show their asymptotic complexities.

4.5.1 Overview

In this subsection, we give an overview of all the sub-protocols in the third part by introducing
the main protocol of the third part, the cycle evaluation. Protocol 4.10 shows how the
sub-protocols in the third part are connected with each other.

Protocol 4.10 evaluateCycles(〈compG〉Y : matrix)→ 〈vectoroftuples〉Y

1: 〈allCycles〉Y ← ∅
2: cCycle← ∅
3: 〈weight〉Y ← 〈0〉Y

4: 〈valid〉Y ← 〈0〉Y

5: for i = 0, . . . , |pairs| − 1 do
6: cCycle.append(i)
7: 〈allCycles〉Y ←

findCycles(〈compG〉Y , cCycle, 〈allCycles〉Y , 〈weight〉Y , 〈valid〉Y)
8: cCycle.remove()
9: end for

10: 〈sortedCycles〉Y ← kNNSort(〈allCycles〉Y , |cycles|)
11: |unique| ← ⌊ |cycles|

cLen ⌋
12: 〈filteredCycles〉Y ← removeDuplicates(〈sortedCycles〉Y , |unique|)
13: return 〈filteredCycles〉Y

In Protocol 4.10, we find all existing exchange cycles in the compatibility graph and remove
duplicates. It takes the secret shared compatibility graph compG of Sub-protocol 4.1 as input.
First, we find all cycles in our compatibility graph using Sub-protocol 4.12 (cf. Lines 1 to 9).
Afterwards, we compute the |cycles| cycles with the highest weight using Sub-protocol 4.13
since these cycles are the only valid cycles in the compatibility graph. To reduce the memory
consumption in the fourth part, we compute the number of unique cycles |unique| (cf. Line 11)

39

4 Design and Implementation

to remove all duplicates in sortedCycles using Sub-protocol 4.14 (cf. Line 12).
SMPC Cost. In Sub-protocol 4.12, we evaluate |pairs| !

(|pairs|−cLen) ! comparisons, |pairs| !
(|pairs|−cLen) ! ×

cLen × 4 ADD gates, and |pairs| !
(|pairs|−cLen) ! × (1 + cLen × 2) MUX gates. In Sub-protocol 4.13,

we evaluate |pairs| !
(|pairs|−cLen) ! × |cycles| comparisons and |pairs| !

(|pairs|−cLen) ! × |cycles| × (1+ cLen× 2)
MUX gates. In Sub-protocol 4.14, we evaluate |cycles| × (cLen2 + |unique|) comparisons
and AND gates, |cycles| × cLen OR gates, |cycles| × (1 + |unique| × (2 + cLen × 2)) MUX

gates. In total, we evaluate, |pairs| !
(|pairs|−cLen) ! × cLen × 4 ADD gates, |cycles| × (|unique| ×

cLen2) AND gates, |pairs| !
(|pairs|−cLen) ! × (1+ |cycles|) + |cycles| × (|unique|+ cLen2) comparisons,

|pairs| !
(|pairs|−cLen) ! × (1 + cLen × 2 × (1 + |cycles|)) + |cycles| × (1 + |unique| × (2 + cLen × 2)
MUX gates, and |cycles| × cLen OR gates. This protocol is most efficient in Y sharing as we
are creating a very deep circuit and each subroutine we are using is most efficient in Y sharing.

4.5.2 Protocols

In order to avoid leaking any information regarding the compatibility between pairs, we
collect all possibly existing cycles in our compatibility graph. The number of possibly existing
exchange cycles is determined in Sub-protocol 4.11 and is denoted by |allCycles|. Knowing
the number of possible exchange cycles, we search for them in our compatibility graph. A
cycle is encoded as a tuple consisting of two entries. The first entry specifies the weight of
the cycle and the second entry is a vector containing the vertices of the cycle in order of the
traversal. A weight greater than zero indicates that a cycle is valid.

Sub-protocol 4.11 #TotalCycles()→ int

1: |allCycles| ← |pairs|
2: for i = 1, . . . , cLen− 1 do
3: |allCycles| ← |allCycles| · (|pairs| − i)
4: end for
5: return |allCycles|

In Sub-protocol 4.11, we compute the maximum number of cycles that could possibly exist
within our compatibility graph. However, each vertex may appear at most once in a cycle
which limits the number of possible cycles. Sub-protocol 4.11 takes no input as the number
of pairs |pairs| and the cycle length cLen are public. The computation can be done in plain
text as all parameters are public. The result |allCycles| is used in Sub-protocol 4.13 to sort
the resulting cycles set of Sub-protocol 4.12. As |allCycles| is public, we will not use it as
input for the following protocols.

40

4 Design and Implementation

Sub-protocol 4.12 findCycles(〈compG〉Y : matrix, cCycle: vector of integers, 〈allC ycles〉Y :
vector of vectors, 〈weight〉Y : int, 〈valid〉Y : int)→ 〈vectoroftuples〉Y

1: if |cCycle|== cLen then
2: 〈weight〉Y ← 〈weight〉Y + 〈compG〉Y [cLen− 1][0]
3: 〈valid〉Y ← 〈compG〉Y [cLen− 1][0]> 〈0〉Y ? 〈valid〉Y + 〈1〉Y : 〈valid〉Y + 〈0〉Y

4: 〈addC〉Y ← 〈cLen〉Y == 〈valid〉Y

5: 〈cWeight〉Y ← 〈addC〉Y ? 〈weight〉Y : 〈0〉Y

6: 〈allCycles〉Y .append(tuple(〈cWeight〉Y , 〈cCycle〉Y))
7: 〈weight〉Y ← 〈weight〉Y − 〈compG〉Y [cLen− 1][0]
8: 〈valid〉Y ← 〈compG〉Y [cLen− 1][0]> 〈0〉Y ? 〈valid〉Y − 〈1〉Y : 〈valid〉Y − 〈0〉Y

9: else
10: for i = 0, . . . , |pairs| − 1 do
11: if cCycle.contains(i) then ▷ Skip if the next vertex is not new.
12: continue
13: else
14: 〈weight〉Y ← 〈weight〉Y + 〈compG〉Y [−1][i]
15: 〈valid〉Y ← 〈compG〉Y [−1][0]> 〈0〉Y ? 〈valid〉Y + 〈1〉Y : 〈valid〉Y + 〈0〉Y

16: cCycle.append(i)
17: 〈allCycles〉Y ← findCycles(〈compG〉Y , cCycle, 〈weight〉Y , 〈valid〉Y , 〈allCycles〉Y)
18: cCycle.remove()
19: 〈weight〉Y ← 〈weight〉Y − 〈compG〉Y [−1][i]
20: 〈valid〉Y ← 〈compG〉Y [−1][0]> 〈0〉Y ? 〈valid〉Y − 〈1〉Y : 〈valid〉Y − 〈0〉Y

21: end if
22: end for
23: end if
24: return 〈allCycles〉Y

In Sub-protocol 4.12, we recursively find all possible exchange cycles in the compatibility
graph and store them with their respective weight, which also indicates whether a cycle is
valid. Essentially, a valid cycle is a cycle where the vertices are connected through edges in
the order they are stored in the respective vector. For example, let us assume that (A, B, C)
represents a possible cycle of length 3. The cycle is valid if there exists an edge from A to B, B
to C, and C to A. The weight of the cycle is the sum of the respective edge weights. If one or
more of these edges are missing, the cycle is invalid and its respective weight is set to 0. As
input, we receive the compatibility graph compG, a vector cCycle representing the cycle of
the current pass-through, a vector of tuples allCycles containing all cycles we have found so
far and their respective weights, the weight of the current cycle weight, and a counter (valid)
to keep track on the number of edges in cCycle.
Lines 1 to 8 describe the base case of the recursion which is executed when the current cycle
has the desired cycle length. We add the weight of the last edge to the current weight of
cCycle (cf. Line 2), check whether the last vertex is connected to the first vertex (cf. Line 3),
and evaluate whether the current cycle is valid by checking if valid is equal to cLen (cf. Line 4),

41

4 Design and Implementation

i.e., the number of edges is equal to the desired cycle length. We set the weight of cCycle

according to cCycle being valid (cf. Line 5). Afterwards, we add the secret shared cCycle

with the secret shared weight to allCycles (cf. Line 6). After inserting the current cycle in
allCycles, we revert the previous operations to evaluate the next cycle, i.e., we revert the
weight and valid to their state prior to starting the base case (cf. Lines 7 to 8).
From Lines 10 to 22, we handle the case when the current cycle does not have the desired
length yet. In Line 11, we check whether the new vertex is already used in the current cycle.
If it is, we skip this iteration as each vertex may appear at most once within an exchange
cycle (cf. Subsection 2.3.2). If the vertex is new, we add the weight of the edge from the
previous vertex to the new vertex to the current cycle’s weight (cf. Line 14), we increment the
counter valid by 1 if there is an edge from the previous vertex to the new vertex, otherwise we
do not increment valid (cf. Line 15), and we add the new vertex to cCycle (cf. Line 16). After-
wards, we recursively call Sub-protocol 4.12 to continue the recursion. Once the method call
returns, we revert the operations done before calling Sub-protocol 4.12 (cf. Lines 18 to 20).
SMPC Cost. The complexity of Sub-protocol 4.12 depends on the number of all pos-
sible cycles |allCycles| = |pairs| !

(|pairs|−cLen !) . In total, we evaluate |pairs| !
(|pairs|−cLen !) comparisons,

|pairs| !
(|pairs|−cLen !) ×cLen×4 ADD gates, and |pairs| !

(|pairs|−cLen !) × (1+cLen×2) MUX gates. This protocol
is most efficient in Y as the the MUX gates depend on each other, thus, building a deep circuit.

42

4 Design and Implementation

Sub-protocol 4.13 kNNSort(〈aCycles〉Y : vector of tuples, k: int)→ vector of cycles

1: 〈sortedW〉Y ← ∅
2: 〈sortedC〉Y ← ∅
3: for i = 0 :, . . . , k do
4: 〈sortedW〉Y .append(〈0〉Y)
5: 〈vertices〉Y ← ∅
6: for j = 0, . . . , cLen− 1 do
7: 〈vertices〉Y .append(〈|pairs|〉Y)
8: end for
9: 〈sortedC〉Y .append(〈vertices〉Y)

10: end for
11: for i = 0, . . . , |aCycles| − 1 do
12: 〈sortedW〉Y [k]← 〈aCycles〉Y [i][0]
13: 〈sortedC〉Y [k]← 〈aCycles〉Y [i][1]
14: for j = 0, . . . , k− 1 do
15: 〈sel〉Y ← 〈sortedW〉Y [j]> 〈sortedW〉Y [j − 1]
16: 〈tmp1〉Y ← 〈sortedW〉Y [j]
17: 〈tmp2〉Y ← 〈sortedW〉Y [j − 1]
18: 〈sortedW〉Y [j]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y

19: 〈sortedW〉Y [j − 1]← 〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y

20: for l = 0, . . . , cLen− 1 do
21: 〈tmp1〉Y ← 〈sortedC〉Y [j][l]
22: 〈tmp2〉Y ← 〈sortedC〉Y [j − 1][l]
23: 〈sortedC〉Y [j][l]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y

24: 〈sortedC〉Y [j − 1][l]← 〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y

25: end for
26: end for
27: end for
28: 〈result〉Y ← ∅
29: for i = 0, . . . , |cycles| − 1 do
30: 〈result〉Y .append(tuple(〈sortedW〉Y [i], 〈sortedC〉Y [i]))
31: end for
32: return 〈result〉Y

Sub-protocol 4.13 is a slightly adapted version of the k-nearest neighbour sort protocol
in [JLL+19]. It identifies the k most robust cycles, i.e., the cycles with the highest weight and
outputs them. It takes a secret shared vector of tuples aCycles as input. The length of cycles
cLen is a public parameter, thus, we do not use it as input parameter.
First, we construct the resulting vectors sortedW and sortedC which will later contain the k
cycles with the highest weight in decreasing order (cf. Lines 1 to 10), i.e., the most robust
cycles. Afterwards, we iterate through all cycles in aCycles and perform an insertion sort like
sorting algorithm. Each cycle of aCycles is inserted in sortedW and sortedC if its weight is

43

4 Design and Implementation

currently part of the k highest weights (cf. Lines 11 to 27). Thus, sortedW and sortedC are
sorted in decreasing order with respect to the weight of cycles. At the end, we reconstruct
the set of the k exchange cycles with the highest weight by storing them in a vector with
their respective weights.
SMPC Cost. For this protocol, we evaluate |aCycles| × k comparison gates and |aCycles| ×
k× (1+ cLen× 2) MUX gates. In total, we evaluate |aCycles| × k× (3+ cLen× 2) AND gates
and the depth of the circuit is |aCycles| × k(2+ cLen). The depth of the circuit is slightly less
than the total amount of AND gates, however, we create a deep circuit, thus, we compute this
protocol in Y.

Sub-protocol 4.14 removeDuplicates(〈sortedCycles〉Y : vector of tuples)→ vector of cycles

1: for i = 0, . . . , |cycles| − 1 do
2: 〈cycle〉Y ← 〈sortedCycles〉Y [i][1]
3: 〈isDuplicate〉Y ← 〈0〉Y

4: for j = 0, . . . , i − 1 do
5: 〈currentC〉Y ← 〈sortedCycles〉Y [j][1]
6: for k = 1, . . . , cLen− 1 do
7: 〈duplicate〉Y ← 〈1〉Y

8: for l = 0, . . . , cLen− 1 do
9: 〈same〉Y ← 〈cycle〉Y [l] == 〈currentC〉Y [(l + k) mod cLen]

10: 〈duplicate〉Y ← 〈duplicate〉Y ∧ 〈same〉Y

11: end for
12: 〈isDuplicate〉Y ← 〈isDuplicate〉Y ∨ 〈duplicate〉Y

13: end for
14: end for
15: 〈sortedCycles〉Y [i][0]← 〈isDuplicate〉Y ? 〈0〉Y : 〈sortedCycles〉Y [i][0]
16: end for
17: return kNNSort(〈sortedCycles〉Y , |unique|) ▷ Sub-protocol 4.13

In Sub-protocol 4.14, we remove all duplicates and extract the k cycles with the highest
weight, i.e., the unique exchange cycles to reduce memory consumption during the fourth
part of our EPPKEP.
It takes a secret shared vector of tuples sortedCycles as input, which represents the result
of Sub-protocol 4.13. The number of existing cycles |cycles|, the number of unique cycles
|unique|, and the cycle length cLen are public parameters, thus, we do not use them as input.
For each cycle in sortedCycles, we check whether the cycle already exists, i.e., if it is a
duplicate. Concretely, we check if the cycle at index i ∈ {0, . . . , |cycles|} is equal to any cycle
at index j ∈ {0, . . . , i − 1} (cf. Lines 1 to 16). In Lines 6 to 13, we check whether two cycles
are duplicates. In order to do so, we check if the vertex of cycle at index l ∈ {0, . . . , cLen−1}
and the vertex of currentC at index (l + k) mod cLen are the same for k ∈ {1, . . . , cLen− 1}.
The expression (l + k) mod cLen represents a shift of the index by k (cf. Line 9). By doing

44

4 Design and Implementation

so, we only need (cLen − 1) × cLen comparison gates instead of cLen2. This approach is
correct as each cycle has a unique order per design, thus, duplicates of a cycle are cycles that
are shifted by k ∈ {1, . . . , cLen− 1}. In Line 15, we set the weight of the current cycle to
0 if the cycle already exists, otherwise we do not change the cycle’s weight. At the end of
Sub-protocol 4.14, each duplicate in sortedCycles is marked with 0 as its weight. With the
help of Sub-protocol 4.13, we sort sortedCycles and return only the |unqiue| cycles with the
highest weight, thus, removing the duplicates as they have a weight of 0. The number of
unique cycles |unique| can be determined by dividing the number of cycles that exist in our
compatibility graph |cycles| by the length of cycles cLen, i.e., |unique|= ⌊ |cycles|

cLen ⌋.
SMPC Cost. We evaluate |cycles| ×

∑︁|cycles|
i=0 (cLen× (cLen− 1)) comparison and AND gates,

|cycles| ×
∑︁|cycles|

i=0 (cLen− 1) OR gates, and |cycles| MUX gates and we evaluate Sub-

protocol 4.13. This results in a total amount of |cycles| × (1 + |cycles|
2 ∗ ((cLen − 1) ×

(1+ cLen× 2)) + |unique| × (3+ cLen× 2)) AND gates, however, the depth of the circuit is
slightly less with |cycles| × (1+ |cycles|

2 ∗ ((cLen−1)× (1+ cLen×2))+ |unique| × (2+ cLen)).
Even though the depth of the circuit is smaller than the the total amount of AND gates, we
evaluate this protocol in Y because the created circuit is really deep.

4.5.3 Complexity Assessment

In Table 4.6, the asymptotic complexity for this part is listed. The most important parameters
are the number of pairs |pairs|, the possible number of cycles |allCycles|, the number of
existing cycles |cycles|, the number of unique cycles |unique|, the length of cycles cLen, the
number of elements in aCycles |aCycles|, and k. The number of possible cycles depends on
the number of pairs and the desired cycle length, i.e., |allCycles|, and the number of unique
cycles depends on the number of cycles and the desired cycle length, i.e., |unique| = ⌊ |cycles|

cLen ⌋.

Table 4.6: Complexity Assessment of Phase 3 – Cycle Evaluation

Protocol Time Complexity Space Complexity

Protocol 4.10 O(|pairs|cLen) O(pairs|cLen+1)
Sub-protocol 4.11 O(1) O(1)
Sub-protocol 4.12 O(|pairs|cLen) O(pairs|cLen+1)
Sub-protocol 4.13 O(|aCycles| × k× cLen) O(k× cLen)
Sub-protocol 4.14 O(|cycles|2) O(|cycles| × cLen)

45

4 Design and Implementation

4.6 Solution Evaluation

In the last part of our EPPKEP, we determine the most robust set of disjoint cycles. In this
way, our EPPKEP outputs a set of disjoint cycles with the highest weight, so that either many
exchange cycles are carried out or fewer but more robust cycles, i.e., exchange cycles that
are more likely to have a successful transplantation. The cycles in the resulting set have to be
disjoint as each pair can donate/receive at most one kidney. Note that we compute a locally
optimal solution to reduce memory consumption. The local optimum might differ from the
global solution.
The number of pairs |pairs|, the number of unique cycles |unique|, and the desired cycle
length cLen are a public parameter, and, thus, will not be used as input for our protocols. In
Subsection 4.6.1, we introduce the main protocol of the last part, the solution evaluation, of
our EPPKEP which combines the sub-protocols introduced in Subsection 4.6.2. Finally, in
Subsection 4.6.3, we show the asymptotic complexities of the protocols.

4.6.1 Overview

After having found all valid and unique cycles in the compatibility graph, we construct a set
of exchange cycles where all cycles in a set are vertex disjoint. Afterwards, we output the set
with the (locally) highest weight, i.e., the set that contains either the most possible exchange
cycles or fewer but more robust exchange cycles, i.e., exchange cycles that are more likely to
have successful transplantation.

46

4 Design and Implementation

Protocol 4.15 evalSolution(〈cycles〉Y : vector of tuples)→ tuple(int, vector of vectors)

1: 〈sets〉Y ← ∅
2: 〈weights〉Y ← ∅
3: 〈dummyC〉Y ← {〈|pairs|〉Y }cLen

4: for i = 0, . . . , |unique| − 1 do
5: 〈currentS〉Y ← ∅
6: 〈currentS〉Y .append(〈cycles〉Y [i][1])
7: 〈weight〉Y ← 〈cycles〉Y [i][0]
8: cycleCount← 1
9: for j = 0, . . . , |unique| − 1 do

10: if i == j then
11: continue
12: end if
13: 〈currentC〉Y ← 〈cycles〉Y [j][1]
14: 〈disjoint〉Y ← disjointCycles(〈cycles〉Y , 〈currentC〉Y , cycleCount)
15: 〈vertices〉Y ← ∅
16: 〈vertices〉Y .append(〈disjoint〉Y ? 〈currentC〉Y : 〈dummyC〉Y)
17: 〈weight〉Y ← 〈disjoint〉Y ? 〈weight〉Y : 〈0〉Y

18: 〈currentS〉Y .append(〈vertices〉Y)
19: cycleCount← cycleCount+ 1
20: end for
21: 〈sets〉Y .append(〈currentS〉Y)
22: 〈weights〉Y .append(〈weight〉Y)
23: end for
24: return findMaximumSet(〈sets〉Y , 〈weights〉Y)

In Protocol 4.15, we compute sets of disjoint exchange cycles and output the set with the
highest weight. The weight of each set is determined by the aggregated weights of the cycles
in the set and indicates the likelihood that exchange cycles in a set are carried out successfully,
i.e., the transplantation being successful. A donor-recipient pair can be involved in only one
exchange cycle, thus, the exchange cycles in a set must be disjoint.
It takes a secret shared vector of tuples cycles with all valid unique cycles and their respective
weights as input. The number of pairs |pairs|, the number of unique cycles |unique|, and
the cycle length cLen are a public variables, thus, we do not pass them as function input.
It iterates over each valid cycle currentC and checks if it is disjoint to all other previously
analysed disjoint cycles in the set currentS (cf. Line 14). Sub-protocol 4.16 is used for
computing whether a cycle is disjoint from all cycles in a set. Only if currentC is disjoint,
we add it to currentS and increase the sum of weights of currentS by currentC’s weight
in Lines 16 to 19. After the analysis of a cycle currentC, the vector sets containing all disjoints
sets is updated and the corresponding weight of the set is stored in weights (cf. Lines 21
to 22). After finishing the analysis of all cycles, we return the the set with the highest weight
along with its weight by using Sub-protocol 4.17 (cf. Line 24).

47

4 Design and Implementation

SMPC Cost. In total, we evaluate |unique|2 ADD gates, |unique|2 × cLen2 + |unique| com-
parisons, 4× |unique|2 + |unique| MUX gates, and |unique|2 × cLen2 OR gates. The solution
evaluation is most efficient in Y as there are only few arithmetic operations and mostly
comparisons. Additionally, the depth of the circuit is the total amount of AND gates used in
this protocol. However, due to memory consumption this protocol has to be executed in B.

4.6.2 Protocols

In this subsection, we introduce the necessary sub-protocols for the fourth part, the solution
evaluation, of our EPPKEP.

Sub-protocol 4.16 disjointCycles(〈cycles〉Y : vector of tuples, 〈cCycle〉Y : vector,
cycleCount:int)→ Boolean

1: 〈notD〉Y ← 〈0〉Y

2: for i = 0, . . . , cycleCount− 1 do
3: 〈cycle〉Y ← 〈cycles〉Y [i][1]
4: for j = 0, . . . , cLen− 1 do
5: for k = 0, . . . , cLen− 1 do
6: 〈tmp〉Y ← 〈cycle〉Y [j] == 〈cCycle〉Y [k]
7: 〈notD〉Y ← 〈notD〉Y ∨ 〈tmp〉Y

8: end for
9: end for

10: end for
11: return ¬〈notD〉Y

In Sub-protocol 4.16, we computer whether a cycle cCycle does not join vertices with other
cycles of an input set of cycles cycles. It takes as input a secret shared vector of tuples cycles,
a secret shared cycle cCycle, and a counter cycleCount which determines the number of
cycles in cycles. For each cycle cycle in cycles, we check whether cCycle shares a vertex
with any of them (cf. Lines 2-10). If even a single cycle in cycles shares a vertex with cCycle,
notD is set to 1 (cf. Line 7). At the end, we invert the result, for further evaluation.
SMPC Cost. In this sub-protocol, we evaluate cycleCount× cLen2 comparisons and OR gates.
At the end, we evaluate one XOR gate. As each of the AND gates depend on each other, the
circuit depth is the same as the number of AND gates. Thus, this protocol is most efficient in
Y sharing. However, the protocol (cf. Protocol 4.15) that calls this sub-protocol has to be
executed in B due to the occurrence of bugs after conversion requires this protocol to be in B
sharing to avoid conversion cost.
Note that Lines 5 to 8 can be computed as a tree to significantly reduce the depth of the

48

4 Design and Implementation

circuit, which improves the run-time performance of this protocol when computed in B4.

Sub-protocol 4.17 findMaximumSet(〈cyclesSets〉Y : vector of tuples, 〈c ycleW 〉Y : vector)
→ 〈tupleofvectors〉Y

1: 〈weights〉Y ← ∅
2: 〈sets〉Y ← ∅
3: for i = 0,1 do
4: 〈weights〉Y .append(〈0〉Y)
5: 〈set〉Y ← ∅
6: for j = 0, . . . |unique| − 1 do
7: 〈vertices〉Y ← ∅
8: for j = 0, . . .cLen− 1 do
9: 〈vertices〉Y .append(〈|pairs|〉Y)

10: end for
11: 〈set〉Y .append(〈vertices〉set)
12: end for
13: 〈sets〉Y .append(〈set〉Y)
14: end for
15: for i = 0, . . . , |unique| − 1 do
16: 〈weights〉Y [1]← 〈cycleW〉Y [i]
17: 〈sets〉Y [1]← 〈cycleSets〉Y [i]
18: 〈sel〉Y ← 〈weights〉Y [1]> 〈weights〉Y [0]
19: 〈tmp1〉Y ← 〈weights〉Y [1]
20: 〈tmp2〉Y ← 〈weights〉Y [0]
21: 〈weights〉Y [1]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y

22: 〈weights〉Y [0]← 〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y

23: for j = 0, . . . , |unique| − 1 do
24: 〈tmp1〉Y ← 〈sets〉Y [1][j]
25: 〈tmp2〉Y ← 〈sets〉Y [0][j]
26: 〈sets〉Y [1][j]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y

27: 〈sets〉Y [0][j]← 〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y

28: end for
29: end for
30: return tuple(〈weights〉Y [0], 〈sets〉Y [0])

In Sub-protocol 4.17, we compute the set of cycles with the highest sum of weights, thus,
the set of cycles with the highest probability having successful transplantation. Note that
we do not compute a global solution but a local solution. Sub-protocol 4.17 takes a secret
shared vector of tuples cyclesSets and a secret shared vector weights as input. cyclesSets

contains all sets of disjoint cycles and weights contains the respective weights of the each set.

4This protocol was computed in B, however, without this optimisation

49

4 Design and Implementation

The number of pairs |pairs| and the number of unique cycles |unique| are public parameters,
thus, we do not pass them as function arguments.
This protocol is a variation of Sub-protocol 4.13 to adapt to the new data structures, i.e., sets
of cycles with weights. The parameter k corresponds to 1 since we only need the set with the
highest weight.
SMPC Cost. We evaluate |unique|2 comparison gates and |unique|2 + |unique| MUX gates.
This protocol is most efficient in Y sharing as the number of AND gates is equal to the depth
of the circuit which is created by AND gates.

4.6.3 Complexity Assessment

Even though all protocols in this part are more efficient in Y, we compute them in B sharing
due to memory consumption. The result of the previous part is stored in B, which would
require to convert each sharing to Y which creates too much memory overhead for our server.
However, converting to Y before executing Sub-protocol 4.17 is possible without causing
undefined behaviour.

In Table 4.7, the asymptotic time and space complexity for this part is listed. The most
important parameters are the number of unique cycles |unique| and the length of cycles cLen.

Table 4.7: Complexity Assessment of Part 4 – Solution Evaluation

Protocol Time Complexity Space Complexity

Protocol 4.15 O(|unique|3 × cLen2) O(|unique|2 × cLen)
Sub-protocol 4.16 O(|unique| × cLen2) Θ(1)
Sub-protocol 4.17 O(|unique|2) O(|unique| × cLen)

50

4 Design and Implementation

4.7 Overall Complexity Assessment

In this section, we show the overall time and space complexity of our EPPKEP and compare
them with current state-of-the-art works [BMWM20; BMW22].
In Table 4.8, we show the total complexities of all four parts and the complexities of the entire
protocol. The time complexity of the entire protocol depends on the number of participating
pairs |pairs|, the number of observed HLA |HLA|, the length of cycles cLen, and the number
of unique cycles that exist in the compatibility |unique|.

Table 4.8: Total Complexity Assessment

Part Time Complexity Space Complexity

1 (cf. Section 4.3) O(|pairs|2 × |HLA|) O(|pairs|2)
2 (cf. Section 4.4) O(|pairs|cLen) O(|pairs|2)
3 (cf. Section 4.5) O(|pairs|cLen) O(pairs|cLen+1)
4 (cf. Section 4.6) O(|unique|3 × cLen2) O(|unique|2 × cLen)
Total O(|pairs|2 × |HLA|+ cLen× |pairs|3 + |unique|3 × cLen2) O(pairs|cLen+1)

Table 4.9 contains the communication and round complexities of current state-of-the-
art [BMWM20; BMW22]. For a detailed complexity analysis of the protocols, we refer to
the respective works. In [BMWM20], l denotes the number of parties that participate in the
protocol, s denotes the security parameter, and |GEC

(3) | denotes the number of disjoint exchange
cycles. Similarly to our EPPKEP, the protocol of Breuer et al. 2020 [BMWM20] depends on the
number of participating pairs and the number of cycles in the compatibility graph. However,
their protocol depends on the number of disjoint exchange cycles while our EPPKEP depends
on the number of all existing exchange cycles which is greater than or equal to the number of
disjoint exchange cycles. The protocol of Breuer et al. 2022 [BMW22] solely depends on the
number of pairs, however they only consider cycles of length L = 2 (cf. Subsection 3.2.2).

Table 4.9: Complexities of Current State-of-the-Art

Part Communication Complexity Round Complexity

[BMWM20] O(l3 × s+ l2 × s× |GEC
(3) |)) O(l3 + l × |GEC

(3) |)
[BMW22] O(|pairs|5) O(|pairs|4)

51

5 Evaluation

As performance and real-world feasibility with respect to run-time and communication are
included as requirements, we present our performance benchmarks and compare them to
current state-of-the-art works by Breuer et al. [BMWM20; BMW22].

Our performance benchmarks were performed on two servers equipped with Intel Core
i9-7960X processors and 128GB RAM. The servers are connected via 10 Gb/s LAN with an
unmodified average latency of 1.3 ms. Our benchmarks are averaged over 10 runs.

In order to provide meaningful performance benchmarks for varying real-world settings,
we used two different network settings for privacy-preserving kidney exchange. The most
relevant real-world scenario is a local area network (LAN) which is characterised by high
bandwidth and low latency. Our LAN setting supports a 10 Gb/s connection with an average
latency of 1.3 ms. The other possible real-world scenario are wide area networks (WAN)
which are characterised by a lower bandwidth and higher latency compared to a LAN set-
ting. Regional hospitals and residential physicians are more likely to be connected through
WANs. Our WAN is restricted to 100 Mb/s bandwidth with 100 ms latency. In addition, we
reproduced the 1 Gb/s bandwidth 1 ms latency network used in the current state-of-the-art
to compare performances.

5.1 Security Discussion

In this section, we lay out why our Efficient and Privacy-Preserving Kidney Exchange Proto-
col (EPPKEP) is secure in the semi-honest security model, i.e., a semi-honest adversary in
control of one of the computing parties learns nothing beyond what can be derived from its
own input and the outputs it receives from the protocol. Generally speaking, our security
follows directly from the provable security of the used SMPC techniques and the security
provided by the implementation (cf. Section 2.2.2).

At the beginning of our protocol, the data owners either secret-share their inputs among
themselves or in an outsourcing scenario they share their data among two computation
parties (cf. Section 2.2.3). Either way, the parties only have access to indistinguishable
random secret shares that do not leak any information. The security of our protocol follows

52

5 Evaluation

directly from the provable security of the used SMPC techniques: Boolean Sharing [GMW87],
Arithmetic Sharing [GMW87], and Yao’s Garbled Circuits [Yao86]. The secret shares of
the medical health information are never opened at any point of our protocol and only
conversions between sharing types are run which are provably secure [DSZ15]. After the first
phase, we output the compatibility graph as secret shares, thus, not leaking any information.
In the second part, we compute the number of cycles that exist in our graph and open-up
the resulting secret share. However, revealing the number of exchange cycles in our graph
does not leak significant information on the private inputs since we do not reveal which
donor-recipient pairs are part of the exchange cycles. If the compatibility graph is fully
connected, revealing the number of exchange cycles leaks that all donor-recipient pairs are
compatible but not the degree of compatibility. Hence, it does not leak details of patients’
medical information. The output of the third part are all secret-shared cycles with their
respective weight excluding duplicates. The secret shared cycles and their respective weights
do not leak any information and the number of cycles has already been opened after part
two. In the fourth part of our protocol, we output secret shares of the locally most robust
set of cycles, which does not leak anything beyond what can be derived from the adversary
controlled party’s private input and its output. Thus, our EPPKEP is secure in the semi-honest
security model and the private input remains hidden during the entire protocol.

5.2 Performance Benchmarks

In Figure 5.1, we show the overall run-time of our EPPKEP for cycle lengths L = 2 and
L = 3. The full benchmarks are in the appendix (cf. Appendix A.1). During the evaluation
of our protocol for cycle length L = 3, RAM consumption was the bottleneck for execution.
We benchmarked up to 40 pairs for L = 2 and up to 18 pairs for L = 3. We extrapolated
the remaining run-times for cycle length L = 3 according to the underlying polynomial
complexity. We present the fitted models in Appendix A.2. The sudden increase in run-time
for L = 3 between 12 and 13 pairs stems from memory swapping.
We observe that there is a polynomial relationship between the number of participating
pairs and the run-time of our protocol which is reflected in the power-law development
in the semi-log graphs, as expected. For L = 2 and 40 pairs, we achieve a run-time of
under 4 minutes in our LAN setting and under 15 minutes in our WAN setting. Thus, our
EPPKEP demonstrates real-world applicable performance in both network scenarios. The
run-time increase in the WAN setting compared to the LAN setting is nearly an order of
magnitude, however, it still shows that it is theoretically feasible for smaller, local hospitals
with residential Internet connections to participate in kidney exchanges using our protocol.
For cycle length L = 3, the exponent in time complexity1 increases such that the run-times
rise significantly. 25 pairs for cycle length L = 3 have a run-time of approximately 1 hour
in our LAN setting which is still feasible for real-world applications. However, in our WAN
setting cycle length L = 3 and 25 pairs have a run-time of approximately 200 hours which is

1This shows as a steepen slope in the graphs.

53

5 Evaluation

not feasible for real-world applications. This can be mitigated by more frequent re-runs of
the protocol with a reduced number of participating pairs.

0 10 20 30 40
10−1

100
101
102
103
104
105
106

LAN

0 20 40

WAN

Number of Pairs

R
u
n
ti
m
e
[s
]

L = 2 L = 3

Figure 5.1: Overall run-time of our EPPKEP for cycle lengths L = 2 and L = 3 in both
network scenarios. The dashed lines shows the extrapolated power function for
L = 3. [BHK+22]

In Figure 5.2, we show the overall communication of our protocol for cycle length L = 2 and
L = 3 in mebibyte (MiB). As expected, we observe that the communication overhead for
L = 3 increases significantly faster than for L = 2 such that 40 and 18 pairs have a similar
communication overhead for cycle length L = 2 and L = 3, respectively. Similar to the
run-time, we observe a polynomial relationship between the number of participating pairs
and the resulting communication cost.

54

5 Evaluation

0 20 40
10−1

100

101

102

103

104

105

Number of Pairs

C
om

m
u
n
ic
at
io
n
[M

iB
]

L = 2 L = 3

Figure 5.2: Overall communication of our EPPKEP for cycle lengths L = 2 and L = 3.

Figure 5.3 shows the run-times of each part individually for cycle length L = 2 in both
protocol phases and in both network setting. It shows that the run-times of the computation
of the compatibility graph (cf. Section 4.3) and the cycle computation (cf. Section 4.4)
become negligible with higher number of pairs compared to the run-times of the cycle
evaluation (cf. Section 4.5) and the solution evaluation (cf. Section 4.6). Within the same
network setting the setup and online phase of the protocol are in the same order of magnitude.

55

5 Evaluation

10−2

10−1

100

101

102

103
S
e
tu

p
P
h
a
se

LAN WAN

0 20 40
10−2

10−1

100

101

102

103

O
n
li
n
e
P
h
a
se

0 20 40

Number of Pairs

R
u
n
ti
m
e
[s
]

1) Compatibility Matching 2) Cycle Computation

3) Cycle Evaluation 4) Solution Evaluation

Figure 5.3: Run-time of our EPPKEP for L = 2 by algorithmic parts, protocol phase, and
network setting. [BHK+22]

Figure 5.4 shows the run-times of each part individually for cycle length L = 3 in both protocol
phases and in both network settings. Similarly to L = 2, it shows that the run-times of the
computation of the compatibility graph (cf. Section 4.3) and the cycle computation (cf. Sec-
tion 4.4) become negligible with higher number of pairs compared to the run-times of the
cycle evaluation (cf. Section 4.5) and the solution evaluation (cf. Section 4.6). Within the
same network setting the setup and online phase of the protocol are in the same order of
magnitude. As expected, the run-time increases significantly faster compared to the run-time
of L = 2. For L = 3 with already 18 pairs, we exceed the run-time of L = 2 with 40 pairs.

56

5 Evaluation

10−2

10−1

100

101

102

103
S
e
tu

p
P
h
a
se

LAN WAN

5 10 15
10−2

10−1

100

101

102

103

O
n
li
n
e
P
h
a
se

5 10 15

Number of Pairs

R
u
n
ti
m
e
[s
]

1) Compatibility Matching 2) Cycle Computation

3) Cycle Evaluation 4) Solution Evaluation

Figure 5.4: Run-time of our EPPKEP for L = 3 by algorithmic parts, protocol phase, and
network setting.

In Figure 5.5, we show the communication of each part for cycle lengths L = 2 and L = 3. The
communication cost for the computation of the compatibility graph and the cycle compute
are negligible compared to the communication cost of the cycle and solution evaluation.
The strong increase in communication cost from 12 to 13 pairs for L = 3 occurs due to
memory swapping.

57

5 Evaluation

10−1

100
101
102
103
104
105

S
e
tu

p
P
h
a
se

L = 2 L=3

0 20 40
10−3
10−2
10−1
100
101
102
103
104
105

O
n
li
n
e
P
h
a
se

5 10 15

Number of Pairs

C
om

m
u
n
ic
at
io
n
[M

iB
]

1) Compatibility Matching 2) Cycle Computation

3) Cycle Evaluation 4) Solution Evaluation

Figure 5.5: Communication of our EPPKEP by algorithmic parts, protocol phase, and cycle
lengths L = 2 and L = 3.

To conclude, the run-time performance and the communication show a polynomial relation-
ship with the number of participating pairs. Additionally, the fourth part of our protocol
depends on the number of cycles that were found during the third part. Thus, the run-time
and the communication can change significantly. Especially, a high occurrence of cycles
further exhausts the RAM usage during the fourth part, which could limit the number of
participating pairs. Despite the high RAM usage, our EPPKEP shows to have real-world
applicable run-time performance and communication cost.

58

5 Evaluation

5.3 Comparison to State-of-the-Art

In Figure 5.6, we compare the run-time of our protocol for cycle length L = 2 and L = 3
compared to the two implementations of [BMWM20; BMW22] (cf. Section 3.2). The
first implementation [BMWM20] was implemented on top of the SMPC framework SMC-
MuSe [NMW13] which implements the HE threshold Paillier Cryptosystem. Similar to our
protocol, they allow to configure the desired length of cycles, however, they compute all
cycles up to the desired cycle length while we only compute cycles of the desired cycle length.
They evaluated their protocol using L = 3. The second implementation [BMW22] is based
on three-party Shamir’s Secret Sharing using the MP-SPDZ framework [Kel20]. The authors
limit the length of cycles to L = 2. The performance data for both implementations are taken
from the referenced publications.

Our implementation and the implementation of Breuer et al. 2022 [BMW22] show a
polynomial-bound power-law. The run-time of [BMWM20] scales exponentially in the number
of pairs. For L = 3 and 9 pairs, the maximum number of pairs benchmarked in [BMWM20],
our implementation achieves a speedup in run-time by a factor of 29 828. For L = 2 and 40
pairs, our implementation shows a 414× speedup in run-time compared to the implementation
of [BMW22].

59

5 Evaluation

0 20 40
10−1

100

101

102

103

104

105

Number of Pairs

R
u
n
ti
m
e
[s
]

LAN: 1Gb/s + 1ms Latency

This Work L = 2 [BMW22] L = 2

This Work L = 3 [BMWM20] L = 3

Figure 5.6: Run-time comparison between this work with cycle lengths L = 2 and L = 3, and
Breuer et al. 2022 (L = 2) and Breuer et al. 2020 (L = 3). [BHK+22]

Figure 5.7 shows a comparison of the communication cost. For L = 3, the communication
cost increase similarly for up to 7 pairs. However, for 8 and more pairs the communication of
the implementation of [BMWM20] increases more rapidly compared to our implementation.
In general, our implementation’s communication overhead shows to have a polynomial
power-law while the implementation of [BMWM20] shows an exponential power-law. For
L = 2, we observe that for smaller number of pairs there is a transient phase where the
communication of [BMW22] increases faster. However, after this transient phase both curves
nearly have the same slope.

60

5 Evaluation

0 20 40
10−1

100
101
102
103
104
105
106

Number of Pairs

C
o
m
m
u
n
ic
at
io
n
[M

iB
]

This Work L = 2 [BMW22] L = 2

This Work L = 3 [BMWM20] L = 3

Figure 5.7: Communication comparison between this work with cycle lengths L = 2 and
L = 3, and Breuer et al. 2022 (L = 2) and Breuer et al. 2020 (L = 3).

We implement additional matching criteria to increase the medical quality of the donor-
recipient matching. In Section 5.2, we have seen that the run-time of the medical evaluation is
negligible compared to the run-times of the third and fourth part of our protocol. Nevertheless,
in Figure 5.8, we compare the run-times of the computation of the compatibility graph for all
factors with the run-time of the reduced factors presented in [BMWM20]. We observed 50
HLA (cf. Subsection 2.1.1) in our benchmarks. For smaller number of pairs, the run-time of
the full set increases slightly faster than the run-time of the reduced set. For number of pairs
larger than 30, both curves assume a nearly similar slope. This shows that using additional
medical factors for an increased medical quality of the evaluation leads to an increase of
overall run-time but this is increase is manageable.

61

5 Evaluation

10−2

10−1

100

101

102

103
S
e
tu

p
P
h
a
se

LAN WAN

101 102 103
10−2

10−1

100

101

102

103

O
n
li
n
e
P
h
a
se

101 102 103

Number of Pairs

R
u
n
ti
m
e
[s
]

Reduced Set Full Set

Figure 5.8: Comparison of the compatibility matching (Part 1) performance between the
reduced set of criteria [BMWM20] and the full set of this work. The run-times
of the remaining protocol parts are independent of the compatibility match-
ing. [BHK+22]

In Figure 5.9, we show the communication of part one of our EPPKEP using either all
additional factors or the reduced set of medical factors used in [BMWM20]. As expected, the
communication in both protocol phases is slightly higher in the full set of criteria than in the
reduced set. However, the communication is still in the same order of magnitude which does
not affect the overall communication of the protocol.

62

5 Evaluation

101 102 103
10−3

10−2

10−1

100
101
102
103
104

Setup Phase

101 102 103

Online Phase

Number of Pairs

C
om

m
u
n
ic
at
io
n
[M

iB
]

Reduced Set Full Set

Figure 5.9: Comparison of the communication of the compatibility matching (Part 1) be-
tween the reduced set of criteria [BMWM20] and the full set of this work. The
communication of the remaining protocol parts are independent of the compati-
bility matching.

63

6 Conclusion

We presented an efficient and privacy-preserving solution for the kidney exchange prob-
lem. Our Efficient and Privacy-Preserving Kidney Exchange Protocol (EPPKEP) provides a
highly adaptable medical compatibility matching algorithm by allowing medical experts to
choose many parameters regarding the biomedical factors, thus, adapting the compatibility
matching algorithm to changes or new advances in the medical field or to specific situational
constraints. The compatibility matching protocol is configurable by choosing the considered
HLA, as well as the weights of the chosen biomedical factors. Choosing the weight for
the biomedical factors allows to highlight certain factors or exclude them entirely. By
design, it is also possible to add or remove biomedical factors without re-designing the
whole protocol. We also enable flexibility by parameterising the length of cycles. Similar
to [BMW22], our protocol can be executed in a dynamic setting in which pairs are peri-
odically drawn of a large pool of donor-recipient pairs. Our protocol allows to do that
for cycle lengths L = 2 and L = 3 in residential network settings in feasible time scales,
so that even residential nephrology experts could participate in kidney exchange programmes.

With a run-time of under 4 minutes for 40 pairs at cycle length L = 2 (LAN setting) and
1 hour for 25 pairs at cycle length L = 3, our EPPKEP shows feasible performance for
many real-world applications. It is faster than current state-of-the-art works of Breuer et al.
2020 [BMWM20] by a factor of approximately 30 000 for cycle length L = 3 and Breuer et al.
2022 [BMW22] by a factor of 400 for cycle length L = 2. We also observe slightly reduced
communication cost compared to the current state-of-the-art protocols.

The results of this work are summarised in [BHK+22] which is still in submission and an
abstract to this work was published on the 33rd Crypto Day [BKMS21].

6.1 Future Work

One shortcoming of our protocol is the high memory consumption during the third and fourth
part of our protocol which limits the number of pairs that can participate in our EPPKEP.
Reducing the memory consumption during those two parts is an interesting direction for
future work. Similarly, looking at internal batch processing of graph clusters and the employ-
ment of space-optimised data structures might be another direction for improvement. For

64

6 Conclusion

part 3, the cycle evaluation, it might be interesting to explore the use of SMPC-based graph
analysis for breadth-first search [TAF+21], which scales linearly in the number of vertices,
i.e., in our application the number of pairs. Further, instead of naive recursion, it might be
interesting to consider the use of shortest-path algorithms to find cycles. For instance, the
Floyd-Warshall algorithm allows for computing the shortest distance between two vertices in
a weighted graph. Additionally, it might be interesting to explore privacy-preserving Integer
Linear Programming or Linear Programming approaches for kidney exchange similar to this
non privacy-preserving approach [CKG+20] to further increase the robustness of the solution.
Another shortcoming is that the developed software is designed as a prototype and does not
implement widespread medical standards, e.g., HL7 FHIRE R41, audit- and authentication
capabilities, integration in medical research pipelines, creation of deployment packages, and
lastly fully (legal) documentation. These aspects must be pursued since they are required for
real-world adoption.
Even though we reduce communications compared to the current state-of-the-art [BMWM20;
BMW22], our communication cost are still too high to use our protocol in metered or cell data
connections. Thus, reducing our communication cost might also be an interesting challenge
for future research.
Additionally, more medical research is needed for intersex participants in kidney exchange.

All things considered, this work represents a new state-of-the-art for privacy-preserving
kidney exchange protocol. We are certain that increasing the privacy of patients’ sensitive
data holds merit and we hope that our approach might contribute to reduced organ donation
waiting times.

1https://www.hl7.org/fhir/R4/

65

https://www.hl7.org/fhir/R4/

List of Figures

1.1 Cyclic exchange of donors in kidney exchange programmes. 2

2.1 Example of a directed and weighted graph . 14
2.2 The cycle in the example graph in Figure 2.1. 15

4.1 High-level overview of our EPPKEP. 23
4.2 The ideal functionality for a privacy-preserving KEP [BHK+22]. 25

5.1 Overall run-time of our EPPKEP for cycle lengths L = 2 and L = 3 in both
network scenarios. The dashed lines shows the extrapolated power function
for L = 3. [BHK+22] . 54

5.2 Overall communication of our EPPKEP for cycle lengths L = 2 and L = 3. . 55
5.3 Run-time of our EPPKEP for L = 2 by algorithmic parts, protocol phase, and

network setting. [BHK+22] . 56
5.4 Run-time of our EPPKEP for L = 3 by algorithmic parts, protocol phase, and

network setting. 57
5.5 Communication of our EPPKEP by algorithmic parts, protocol phase, and

cycle lengths L = 2 and L = 3. 58
5.6 Run-time comparison between this work with cycle lengths L = 2 and L = 3,

and Breuer et al. 2022 (L = 2) and Breuer et al. 2020 (L = 3). [BHK+22] . 60
5.7 Communication comparison between this work with cycle lengths L = 2 and

L = 3, and Breuer et al. 2022 (L = 2) and Breuer et al. 2020 (L = 3). 61
5.8 Comparison of the compatibility matching (Part 1) performance between the

reduced set of criteria [BMWM20] and the full set of this work. The run-
times of the remaining protocol parts are independent of the compatibility
matching. [BHK+22] . 62

5.9 Comparison of the communication of the compatibility matching (Part 1)
between the reduced set of criteria [BMWM20] and the full set of this work.
The communication of the remaining protocol parts are independent of the
compatibility matching. 63

66

List of Tables

2.1 HLA split antigens assessed for determining compatibility. 6
2.2 ABO compatibility according to [Blu21] . 7
2.3 Garbled AND Gate . 12

4.1 Overview of the attributes of a donor that are required to determine compat-
ibility. 26

4.2 Overview of the attributes of a recipient that are required to determine
compatibility. 27

4.3 Encoding of the different blood groups. 31
4.4 Complexity Assessment of Part 1 – Compatibility Matching 35
4.5 Complexity Assessment of Part 2 – Cycle Computation 38
4.6 Complexity Assessment of Phase 3 – Cycle Evaluation 45
4.7 Complexity Assessment of Part 4 – Solution Evaluation 50
4.8 Total Complexity Assessment . 51
4.9 Complexities of Current State-of-the-Art . 51

A.1 Comparison of the communication costs and setup and online run-times
of EPPKEP for the three networking configurations A: LAN + 10 Gb/s, B:
LAN + 1 Gb/s, C: WAN, and for cycle length L = 2. This table contains the
aggregated total costs [BHK+22]. 77

A.2 Comparison of the communication costs and setup and online run-times
of EPPKEP for the three networking configurations A: LAN + 10 Gb/s, B:
LAN + 1 Gb/s, C: WAN, and for cycle length L = 2. This table contains the
individual costs of Part 1 (Compatibility Matching) [BHK+22]. 78

A.3 Comparison of the communication costs and setup and online run-times
of EPPKEP for the three networking configurations A: LAN + 10 Gb/s, B:
LAN + 1 Gb/s, C: WAN, and for cycle length L = 2. This table contains the
individual costs of Part 2 (Cycle Computation) [BHK+22]. 79

A.4 Comparison of the communication costs and setup and online run-times
of EPPKEP for the three networking configurations A: LAN + 10 Gb/s, B:
LAN + 1 Gb/s, C: WAN, and for cycle length L = 2. This table contains the
individual costs of Part 3 (Cycle Evaluation) [BHK+22]. 80

A.5 Comparison of the communication costs and setup and online run-times of
EPPKEP for the three networking configurations A: LAN + 10 Gb/s, B: LAN
+ 1 Gb/s, C: WAN and for cycle length L = 2. This table contains individual
costs of Part 4 (Solution Evaluation) [BHK+22]. 81

67

List of Tables

A.6 Comparison of the communication costs and setup and online run-times
of EPPKEP for the three networking configurations A: LAN + 10 Gb/s, B:
LAN + 1 Gb/s, C: WAN and for cycle length L = 3. This table contains the
aggregated total costs [BHK+22]. 82

A.7 Comparison of the communication costs and setup and online run-times of
EPPKEP for the three networking configurations A: LAN + 10 Gb/s, B: LAN +
1 Gb/s, C: WAN and for cycle length L = 3. This table contains the individual
costs of Part 1 (Compatibility Matching) [BHK+22]. 83

A.8 Comparison of the communication costs and setup and online run-times of
EPPKEP for the three networking configurations A: LAN + 10 Gb/s, B: LAN +
1 Gb/s, C: WAN and for cycle length L = 3. This table contains the individual
costs of Part 2 (Cycle Computation) [BHK+22]. 84

A.9 Comparison of the communication costs and setup and online run-times of
EPPKEP for the three networking configurations A: LAN + 10 Gb/s, B: LAN +
1 Gb/s, C: WAN and for cycle length L = 3. This table contains the individual
costs of Part 3 (Cycle Evaluation) [BHK+22]. 85

A.10 Comparison of the communication costs and setup and online run-times of
EPPKEP for the three networking configurations A: LAN + 10 Gb/s, B: LAN +
1 Gb/s, C: WAN and for cycle length L = 3. This table contains the individual
costs of Part 4 (Solution Evaluation) [BHK+22]. 86

A.11 Comparison of the setup and online run-times of EPPKEP for the reduced
medical factor compatibility matching and the full set in the two main net-
working configurations A: LAN + 10 Gb/s, C: WAN [BHK+22]. 87

68

List of Abbreviations

ABMR Antibody Mediated Rejection

EPPKEP Efficient and Privacy-Preserving Kidney Exchange Protocol

HE Homomorphic Encryption

HLA Human Leukocyte Antigens

KEP Kidney Exchange Problem

MHC Major Histocompatibility Complex

SIMD Single Instruction Multiple Data

SMPC Secure Multi-Party Computation

TTP Trusted Third Party

69

Bibliography

[ABL+04] M. ATALLAH, M. BYKOVA, J. LI, K. FRIKKEN, M. TOPKARA. “Private Collaborative
Forecasting and Benchmarking”. In: Workshop on Privacy in the Electronic
Society (WPES). ACM, 2004.

[AJL+02] B. ALBERTS, A. JOHNSON, J. LEWIS, M. RAFF, K. ROBERTS, P. WALTER. “The
Adaptive Immune System.” In: Molecular biology of the cell 4th Edition.
Garland Science, 2002.

[ALR+17] V. B. ASHBY, A. B. LEICHTNAM, M. A. REES, P. X.-K. SONG, M. BRAY, W. WANG,
J. D. KALBFLEISCH. “A Kidney Graft Survival Calculator that accounts for
Mismatches in Age, Sex, HLA, and Body Size”. In: Clinical Journal of the
American Society of Nephrology. American Society of Nephrology (ASN), 2017.

[BCF+14] J. BRINGER, H. CHABANNE, M. FAVRE, A. PATEY, T. SCHNEIDER. “GSHADE: faster
Privacy-Preserving Distance Computation and Biometric Identification”.
In: Information Hiding and Multimedia Security (IH&MMSec). ACM, 2014.

[BCS21] L. BRAUN, R. CAMMAROTA, T. SCHNEIDER. “A Generic Hybrid 2PC Framework
with Application to Private Inference of Unmodified Neural Networks
(Extended Abstract)”. In: Privacy in Machine Learning Workshop (NeurIPS
2021). 2021.

[Bet21] BETTERHEALTH. “Immune System Explained”. https://www.betterhealth.
vic . gov . au / health / conditionsandtreatments / immune - system. Ac-
cessed: 2021-05-29. 2021.

[Bet22] BETTERHEALTH. “Dialysis”. https : / / www . healthline . com / health /

dialysis. Accessed: 2022-03-11. 2022.

[BFS+17] G. A. BÖHMIG, J. FRONEK, A. SLAVCEV, G. F. FISCHER, G. BERLAKOVICH,
O. VIKLICKY. “Transplant International”. In: Wiley Online Library, 2017.

[BGM+20] P. BIRÓ, M. GYETVAI, R. S. MINCU, A. POPA, U. VERMA. “IP Solutions for
International Kidney Exchange Programmes”. In: Central European Journal
of Operations Research 29. Springer, 2020, pp. 403–423.

70

https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/immune-system
https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/immune-system
https://www.healthline.com/health/dialysis
https://www.healthline.com/health/dialysis

Bibliography

[BHA+18] P. BIRÓ, B. HASSE-KROMWIJK, T. ANDERSSON, E. I. ÁSGEIRSSON, T. BALTESOVÁ,
I. BOLETIS, C. BOLOTINHA, G. BOND, G. BÖHMIG, L. BURNAPP, K. CECHLÁROVÁ,
P. D. CIACCIO, J. FRONEK, K. HADAYA, A. HEMKE, C. JACQUELINET, R. JOHN-
SON, R. KIESZEK, D. R. KUYPERS, R. LEISHMAN, M.-A. MACHER, D. MANLOVE,
G. MENOUDAKOU, M. SALONEN, B. SMEULDERS, V. SPARACINO, F. SPIEKSMA,
M. O. S. VALENTÍN, N. WILSON, J. v. d. KLUNDERT. “Building Kidney Exchange
Programmes in Europe—An Overview of Exchange Practice and Activities”.
In: Transplantation. The Transplantation Society, 2018.

[BHK+22] T. BIRKA, K. HAMACHER, T. KUSSEL, H. MÖLLERING, T. SCHNEIDER. “SPIKE:
Secure and Private Investigation of the Kidney Exchange problem”. In:
2022.

[BKM+21] P. BIRÓ, J. v. d. KLUNDERT, D. MANLOVE, W. PETTERSSON, T. ANDERSSON, L. BUR-
NAPP, P. CHROMY, P. DELGADO, P. DWORCZAK, B. HAASE, A. HEMKE, R. JOHN-
SON, X. KLIMENTOVA, D. KUYPERS, A. N. COSTA, B. SMEULDERS, F. SPIEKSMA,
M. O. VALENTÍN, A. VIANA. “Modelling and optimisation in european kid-
ney exchange programmes”. In: European Journal of Operational Research.
Elsevier, 2021.

[BKMS21] T. BIRKA, T. KUSSEL, H. MÖLLERING, T. SCHNEIDER. “Efficient and Practical
Privacy-Preserving Kidney Exchange Problem Protocol”. In: 2021.

[Blu21] BLUTSPENDEN. “Rund ums Blut”. https://www.blutspenden.de/rund-ums-
blut/blutgruppen/. Accessed: 2021-05-29. 2021.

[BMW22] M. BREUER, U. MEYER, S. WETZEL. “Privacy-Preserving Maximum Matching
on General Graphs and its Application to Enable Privacy-Preserving Kid-
ney Exchange”. In: Conference on Data and Application Security and Privacy
(CODASPY). ACM, 2022.

[BMWM20] M. BREUER, U. MEYER, S. WETZEL, A. MÜHLFELD. “A Privacy-Preserving
Protocol for the Kidney Exchange Problem”. In: Workshop on Privacy in the
Electronic Society (WPES). ACM, 2020.

[CCA13] P. CRUZ-TAPIAS, J. CASTIBLANCO, J.-M. ANAYA. “Chapter 10 major Histocom-
patibility Complex: Antigen Processing and Presentation”. In: Autoim-
munity: From Bench to Bedside. Center for Autoimmune Diseases Research,
2013.

[CH10] O. CATRINA, S. d. HOOGH. “Secure Multiparty Linear Programming Using
Fixed-Point Arithmetic”. In: Proceedings of the 15th European Symposium on
Research in Computer Security. ACM, 2010.

[Cho07] S. Y. CHOO. “The HLA System: Genetics, Immunology, Clinical Testing, and
Clinical Implications”. In: Yonsei Medical Journal. Yonsei University College
of Medicine, 2007.

[CKG+20] M. CARVALHO, X. KLIMENTOVA, K. GLORIE, A. VIANA, M. CONSTANTINO. “Robust
Models for The Kidney Exchange Problem”. In: Informs Journal on Computing.
INFORMS, 2020.

71

https://www.blutspenden.de/rund-ums-blut/blutgruppen/
https://www.blutspenden.de/rund-ums-blut/blutgruppen/

Bibliography

[DK11] J. DREIER, F. KERSCHBAUM. “Practical Secure and Efficient Multiparty Linear
Programming Based on Problem Transformation”. In: Technical Report]
IACR Cryptology ePrint Archive. HAL, 2011.

[DSZ15] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “ABY – A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation”. In: Network and Distributed
System Security Symposium (NDSS). Internet Society, 2015.

[EHB+03] A. E. EL-AGROUDY, N. A. HASSAN, M. A. BAKR, M. A. FODA, A. A. SHOKEIR,
A. B. S. EL-DEIN. “Effect of Donor/recipient Body Weight Mismatch on
Recipient and Graft Outcome in Living-Donor Kidney Transplantation”. In:
American Journal of Nephrology. American Society of Nephrology, 2003.

[Eur21a] EUROTRANSPLANT. “About us”. https://www.eurotransplant.org/about-
eurotransplant/eurotransplants-aims/. Accessed: 2021-08-09. 2021.

[Eur21b] EUROTRANSPLANT. “History and timeline”. https://www.eurotransplant.
org/about-eurotransplant/history-and-timeline/. Accessed: 2021-05-
10. 2021.

[Eur21c] EUROTRANSPLANT. “Kidney”. https://www.eurotransplant.org/organs/
kidney/. Accessed: 2021-08-09. 2021.

[Eur21d] EUROTRANSPLANT. “Recipients: Eurotransplant Manual Chapter 10”.
https://www.eurotransplant.org/wp-content/uploads/2020/01/H10-

Histocompatibility.pdf. Accessed: 2021-08-06. 2021.

[Eur21e] EUROTRANSPLANT. “Recipients: Eurotransplant Manual Chapter 4”. https:
//www.eurotransplant.org/wp-content/uploads/2020/01/H4-Kidney.

pdf. Accessed: 2021-06-17. 2021.

[Eur22a] EUROTRANSPLANT. “Active Kidney-Only Waiting List (at year end) in 2021,
by Country, by Characteristics”. https://statistics.eurotransplant.

org/index.php?search_type=waiting+list&search_organ=&search_

region=by+country&search_period=2021&search_characteristic=

&search_text=. Accessed: 2022-03-04. 2022.

[Eur22b] EUROTRANSPLANT. “Deceased Kidney Donors Used in 2021, by Donor
Country, by Characteristic”. https://statistics.eurotransplant.org/
index.php?search_type=donors&search_organ=&search_region=by+

country&search_period=2021&search_characteristic=&search_text=.
Accessed: 2022-03-04. 2022.

[FGHW14] M. K. FUNG, B. J. GROSSMAN, C. D. HILLYER, C. M. WESTHOFF. “ABO, H,
and Lewis Blood Groups and Structurally Related Antigens”. In: Technical
Manual 18TH Edition. Association for the Advancement of Blood & Biothera-
pies(AABB), 2014.

[FPS00] P.-A. FOUQUE, G. POUPARD, J. STERN. “Sharing Decryption in the Context of
Voting and Lotteries”. In: Financial Cryptography. Springer, 2000.

72

https://www.eurotransplant.org/about-eurotransplant/eurotransplants-aims/
https://www.eurotransplant.org/about-eurotransplant/eurotransplants-aims/
https://www.eurotransplant.org/about-eurotransplant/history-and-timeline/
https://www.eurotransplant.org/about-eurotransplant/history-and-timeline/
https://www.eurotransplant.org/organs/kidney/
https://www.eurotransplant.org/organs/kidney/
https://www.eurotransplant.org/wp-content/uploads/2020/01/H10-Histocompatibility.pdf
https://www.eurotransplant.org/wp-content/uploads/2020/01/H10-Histocompatibility.pdf
https://www.eurotransplant.org/wp-content/uploads/2020/01/H4-Kidney.pdf
https://www.eurotransplant.org/wp-content/uploads/2020/01/H4-Kidney.pdf
https://www.eurotransplant.org/wp-content/uploads/2020/01/H4-Kidney.pdf
https://statistics.eurotransplant.org/index.php?search_type=waiting+list&search_organ=&search_region=by+country&search_period=2021&search_characteristic=&search_text=
https://statistics.eurotransplant.org/index.php?search_type=waiting+list&search_organ=&search_region=by+country&search_period=2021&search_characteristic=&search_text=
https://statistics.eurotransplant.org/index.php?search_type=waiting+list&search_organ=&search_region=by+country&search_period=2021&search_characteristic=&search_text=
https://statistics.eurotransplant.org/index.php?search_type=waiting+list&search_organ=&search_region=by+country&search_period=2021&search_characteristic=&search_text=
https://statistics.eurotransplant.org/index.php?search_type=donors&search_organ=&search_region=by+country&search_period=2021&search_characteristic=&search_text=
https://statistics.eurotransplant.org/index.php?search_type=donors&search_organ=&search_region=by+country&search_period=2021&search_characteristic=&search_text=
https://statistics.eurotransplant.org/index.php?search_type=donors&search_organ=&search_region=by+country&search_period=2021&search_characteristic=&search_text=

Bibliography

[GMW87] O. GOLDREICH, S. MICALI, A. WIGDERSON. “How to Play any Mental Game or a
Completeness Theorem for Protocols with Honest Majority”. In: Symposium
on Theory of Computing (STOC). ACM, 1987.

[JLL+19] K. JÄRVINEN, H. LEPPÄKOSKI, E.-S. LOHAN, P. RICHTER, T. SCHNEIDER, O. TKACHENKO,
Z. YANG. “PILOT: Practical Privacy-Preserving Indoor Localization using
Outsourcing”. In: EuroS&P. IEEE Computer Society, 2019.

[Kel20] M. KELLER. “MP-SPDZ: A Versatile Framework for Multi-Party Computation”.
In: Computing Classification System (CCS). ACM, 2020.

[KKC+05] M. D. KLERK, K. M. KREIZER, F. H. J. CLASS, M. WITVLIET, B. J. J. M. HAASE-
KROMWIJK, W. WEIMAR. “The Dutch National Living Donor Kidney Exchange
Program”. In: American Journal of Transplantation. Wiley Online Library,
2005.

[KR11] S. KAMARA, M. RAYKOVA. “Secure Outsourced Computation in a Multi-Tenant
Cloud”. In: IBM Workshop on Cryptography and Security in Clouds. 2011.

[KS08] V. KOLESNIKOV, T. SCHNEIDER. “Improved Garbled Circuit: Free XOR Gates
and Applications”. In: Automata, Languages and Programming. Springer,
2008.

[KSS14] F. KERSCHBAUM, T. SCHNEIDER, A. SCHRÖPFER. “Automatic Protocol Selection
in Secure Two-Party Computations”. In: Applied Cryptography and Network
Security. Springer, 2014.

[LCC+12] W. H. LIM, S. J. CHADBAN, P. CLAYTON, C. A. BUDGEON, K. MURRAY, S. B. CAMP-
BELL, S. COHNEY, G. R. RUSS, S. P. MCDONALD. “Human Leukocyte Antigen
Mismatches associated with increased Risk of Rejection, Graft Failure,
and Death independent of initial Immunosuppression in Renal Transplant
Recipients”. In: Clinical Transplantation. Wiley Online Library, 2012.

[LLH+10] C. LEFAUCHEUR, A. LOUPY, G. S. HILL, J. ANDRADE, D. NOCHY, C. ANTOINE,
C. GAUTREAU, D. CHARRON, D. GLOTZ, C. SUBERBIELLE-BOISSEL. “Preexisting
Donor-Specific HLA Antibodies Predict Outcome in Kidney Transplanta-
tion”. In: Journal of American Society of Nephrology. American Society of
Nephrology (ASN), 2010.

[LPT+18] N. LEEAPHORN, J. R. A. PENA, N. THAMCHAROEN, E. V. KHANKIN, M. PAVLAKIS.
“HLA-DQ Mismatching and Kidney Transplant Outcomes”. In: Clinical
Journal of the American Society of Nephrology. American Society of Nephrology
(ASN), 2018.

[MKA+17] A. J. MILLER, B. A. KIBERD, I. P. ALWAYN, A. ODUTAYO, K. K. TENNANKORE.
“Donor-Recipient Weight and Sex Mismatch and the Risk of Graft Loss
in Renal Transplantation”. In: Clinical Journal of the American Society of
Nephrology. American Society of Nephrology (ASN), 2017.

[NHK01] M.-C. NGUYEN, K. HEINDL-RUSAI, L. KALTENEGGER. “Evaluation of HLA typing
data and transplant outcome in pediatric renal transplantation”. In: 20201.

73

Bibliography

[NIK+11] I.-S. A. NTOKOU, A. G. INIOTAKI, E. N. KONTOU, M. N. DAREMA, M. D. APOS-
TOLAKI, A. G. KOSTAKIS, J. N. BOLETIS. “Long-Term Follow Up for Anti-HLA
Donor Specific Antibodies Postrenal Transplantation: High Immunogenic-
ity of HLA Class II Graft Molecules”. In: Transplant International. Wiley
Online Library, 2011.

[NMW13] G. NEUGEBAUER, U. MEYER, S. WETZEL. “SMC-MuSe: A framework for Secure
Multi-Party Computation on MultiSets”. In: Informatik angepasst an Mensch,
Organisation und Umwelt. Springer, 2013.

[OD12] G. OPELZ, B. DÖHLER. “Association of HLA Mismatch with Death with a
Functioning Graft after Kidney Transplantation: a Collaborative Transplant
Study Report”. In: American Journal of Transplantation. Wiley-Blackwell, 2012.

[Ope97] G. OPELZ. “Impact of HLA Compatibility on Survival of Kidney Transplants
from Unrelated Live Donors”. In: Transplantation. The Transplantation
Society, 1997.

[OPS13] J. OWEN, J. PUNT, S. STRANFORD. “The Major Histocompatibility Complex
and Antigen Presentation”. In: Kuby Immunology (Seventh Edition). W. H.
Freeman and Company, 2013.

[PBS12] P. PULLONEN, D. BODANOV, T. SCHNEIDER. “The Design and Implementation
of a Two-Party Protocol Suite for SHAREMIND 3”. In: Technical report,
CYBERNETICA Institute of Information Security, 2012.

[PC80] U. PAPE, D. CONRADT. “Maximales Matching in Graphen”. In: Ausgewählte
Operations Research Software in FORTRAN. R. Oldenbourg Verlag, 1980.

[PCCS18] L. PANSART, H. CAMBAZARD, N. CATUSSE, G. STAUFFER. “Kidney Exchange
Problem: Models and Algorithms”. In: congrès annuel de la Société Francaise
de Recherche Opérationelle et d’Aide á la Décision (Le congrès annuel - ROADEF).
ROADEF, 2018.

[PSSY21] A. PATRA, T. SCHNEIDER, A. SURESH, H. YALAME. “ABY2.0: Improved Mixed-
Protocol Secure Two-Party Computation”. In: 30. USENIX Security Symposium
(USENIX Security’21). USENIX, 2021.

[SCM+14] C. SANTOS, R. COSTA, J. MALHEIRO, S. PEDROSO, M. ALMEIDA, L. S. MARTINS,
L. DIAS, S. TAFULO, A. C. HENRIQUES, A. CABRITA. “Kidney Transplantation
across a Positive Crossmatch: a Single-Center Experience”. In: Transplanta-
tion Proceedings. Elsevier, 2014.

[TAF+21] TOSHINORI, ARAKI, J. FURUKAWA, K. OHARA, B. PINKAS, H. ROSEMARIN,
H. TSUCHIDA. “Secure Graph Analysis at Scale”. In: Proceedings of the 2021
SIGSAC Conference on Computer and Communications Security. ACM, 2021,
pp. 610–629.

[Tof09] T. TOFT. “Solving Linear Programs Using Multiparty Computation”. In:
Financial Cryptography and Data Security. Springer, 2009.

74

Bibliography

[WB18] A. E. d. WEERD, M. G. H. BETJES. “ABO-Incompatible Kidney Transplant
Outcomes: A Meta-Analysis”. In: Clinical Journal of the American Society of
Nephrology. American Society of Nephrology (ASN), 2018.

[WSB+00] J. WAISER, M. SCHREIBER, K. BUDDE, L. FRITSCHE, T. BÖHLER, I. HAUSER,
H.-H. NEUMAYER. “Age-Matching in Renal Transplantation”. In: Nephrology
Dialysis Transplantation. Oxford University Press, 2000.

[Yao82] A. C. YAO. “Protocols for Secure Computations”. In: Symposium on Founda-
tions of Computer Science. IEEE Computer Society, 1982.

[Yao86] A. C.-C. YAO. “How to Generate and Exchange Secrets”. In: Foundations of
Computer Science (FOCS’86). IEEE Computer Society, 1986, pp. 162–167.

[ZCH+12] J.-Y. ZHOU, J. CHENG, H.-F. HUANG, Y. SHEN, Y. JIANG, J.-H. CHEN. “The Effect
of Donor-Recipient Sex Mismatch on Short- and Long-Term Graft Survival
in Kidney Transplantation: a Systematic Review and Meta-Analysis”. In:
Clinical Transplantation. Wiley Online Library, 2012.

[ZRE15] S. ZAHUR, M. ROSULEK, D. EVANS. “Two Halves Make a Whole - Reducing Data
Transfer in Garbled Circuits using Half Gates”. In: Advances in Cryptology -
EUROCRYPT 2015. Springer, 2015.

75

A Appendix

A.1 Full Benchmarks

In Tables A.1 to A.5, we provide the full benchmarks for the communication overhead and
for the setup and online phase in all three described network settings (A: LAN + 10 Gb/s, B:
LAN + 1 GB/s, C: WAN) for cycle length L = 2. Tables A.6 to A.10 show the full benchmarks
for cycle length L = 3. In Table A.11, we provide the full benchmarks of both the reduced set
of medical compatibility factors and the full set of the medical compatibility factors in our
two main network settings A and C.

76

A Appendix

Table A.1: Comparison of the communication costs and setup and online run-times of EPPKEP
for the three networking configurations A: LAN + 10 Gb/s, B: LAN + 1 Gb/s,
C: WAN, and for cycle length L = 2. This table contains the aggregated total
costs [BHK+22].

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Total

2 0.2 0 0.027 0.027 0.85 0.07 0.068 4.3
3 0.5 0.1 0.05 0.045 1.4 0.09 0.092 4.9
4 1.2 0.1 0.086 0.066 1.6 0.11 0.12 5.7
5 1.7 0.2 0.12 0.081 1.8 0.13 0.14 5.9
6 3.6 0.3 0.16 0.13 2.2 0.2 0.22 7.2
7 4.6 0.4 0.21 0.15 2.7 0.22 0.23 6.8
8 5.8 0.4 0.22 0.19 2.9 0.23 0.24 6.8
9 9.9 0.6 0.29 0.24 3.4 0.32 0.33 8.1

10 13.5 0.8 0.3 0.3 4 0.38 0.38 8.7
12 20.7 1.1 0.38 0.4 4.7 0.48 0.51 9.3
14 66.3 2.4 0.74 0.79 8.3 1.1 1.2 15
16 117.4 3.8 1.2 1.3 12 1.7 1.8 19
18 203.6 5.9 1.7 2 18 2.7 2.7 24
20 592.4 14.7 3.8 4.6 44 7.7 7.6 39
22 910.4 21.2 5.4 6.5 65 12 12 48
24 1,225.3 27.4 7.1 8.4 83 16 16 56
26 1,665.6 35.8 9.8 11 110 24 22 67
28 1,921.5 40.2 12 13 130 28 26 72
30 2,428.2 49.3 15 16 160 36 33 84
32 3,392.7 66.9 19 22 210 47 47 100
34 4,709.2 90.5 26 29 290 67 67 130
36 6,333.6 119.2 33 38 380 91 91 170
38 8,119.2 150.1 43 48 480 120 120 200
40 10,424.9 189.7 53 62 610 160 160 250

77

A Appendix

Table A.2: Comparison of the communication costs and setup and online run-times of EPPKEP
for the three networking configurations A: LAN + 10 Gb/s, B: LAN + 1 Gb/s,
C: WAN, and for cycle length L = 2. This table contains the individual costs of
Part 1 (Compatibility Matching) [BHK+22].

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Part 1: Compatibility Matching

2 0 0 0.01 0.01 0.45 0.012 0.012 0.75
3 0.1 0 0.013 0.013 0.56 0.013 0.013 0.75
4 0.2 0 0.015 0.015 0.56 0.014 0.014 0.76
5 0.3 0 0.019 0.018 0.72 0.017 0.016 0.76
6 0.4 0.1 0.024 0.023 0.85 0.019 0.018 0.76
7 0.7 0.1 0.031 0.029 0.87 0.021 0.021 0.76
8 0.9 0.1 0.041 0.038 0.88 0.026 0.023 0.77
9 1.3 0.2 0.05 0.044 0.99 0.028 0.027 0.77

10 1.7 0.2 0.06 0.054 1.2 0.03 0.03 0.78
12 2.8 0.3 0.078 0.073 1.4 0.038 0.036 0.79
14 4.3 0.4 0.11 0.11 1.6 0.045 0.041 0.8
16 6.2 0.5 0.14 0.14 1.8 0.056 0.053 0.82
18 8.6 0.7 0.15 0.15 1.8 0.064 0.063 0.85
20 11.6 0.8 0.16 0.16 2 0.076 0.074 0.88
22 15.3 1 0.18 0.19 2.3 0.088 0.089 0.94
24 19.6 1.2 0.19 0.21 2.7 0.1 0.094 1.2
26 24.6 1.5 0.22 0.25 3.5 0.12 0.12 1.5
28 30.5 1.7 0.25 0.29 4.4 0.12 0.14 1.9
30 37.2 2 0.27 0.33 4.8 0.13 0.15 1.9
32 44.8 2.3 0.3 0.39 6.4 0.15 0.16 2.1
34 53.4 2.6 0.34 0.45 6.5 0.15 0.18 2.5
36 63 3 0.37 0.5 7.3 0.16 0.18 2.3
38 73.7 3.4 0.44 0.58 8.2 0.17 0.2 2.4
40 85.6 3.8 0.47 0.67 9.1 0.19 0.22 2.4

78

A Appendix

Table A.3: Comparison of the communication costs and setup and online run-times of EPPKEP
for the three networking configurations A: LAN + 10 Gb/s, B: LAN + 1 Gb/s,
C: WAN, and for cycle length L = 2. This table contains the individual costs of
Part 2 (Cycle Computation) [BHK+22].

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Part 2: Cycle Computation

2 0 0 0.01 0.01 0.45 0.012 0.012 0.75
3 0.1 0 0.013 0.013 0.56 0.013 0.013 0.75
4 0.2 0 0.015 0.015 0.56 0.014 0.014 0.76
5 0.3 0 0.019 0.018 0.72 0.017 0.016 0.76
6 0.4 0.1 0.024 0.023 0.85 0.019 0.018 0.76
7 0.7 0.1 0.031 0.029 0.87 0.021 0.021 0.76
8 0.9 0.1 0.041 0.038 0.88 0.026 0.023 0.77
9 1.3 0.2 0.05 0.044 0.99 0.028 0.027 0.77

10 1.7 0.2 0.06 0.054 1.2 0.03 0.03 0.78
12 2.8 0.3 0.078 0.073 1.4 0.038 0.036 0.79
14 4.3 0.4 0.11 0.11 1.6 0.045 0.041 0.8
16 6.2 0.5 0.14 0.14 1.8 0.056 0.053 0.82
18 8.6 0.7 0.15 0.15 1.8 0.064 0.063 0.85
20 11.6 0.8 0.16 0.16 2 0.076 0.074 0.88
22 15.3 1 0.18 0.19 2.3 0.088 0.089 0.94
24 19.6 1.2 0.19 0.21 2.7 0.1 0.094 1.2
26 24.6 1.5 0.22 0.25 3.5 0.12 0.12 1.5
28 30.5 1.7 0.25 0.29 4.4 0.12 0.14 1.9
30 37.2 2 0.27 0.33 4.8 0.13 0.15 1.9
32 44.8 2.3 0.3 0.39 6.4 0.15 0.16 2.1
34 53.4 2.6 0.34 0.45 6.5 0.15 0.18 2.5
36 63 3 0.37 0.5 7.3 0.16 0.18 2.3
38 73.7 3.4 0.44 0.58 8.2 0.17 0.2 2.4
40 85.6 3.8 0.47 0.67 9.1 0.19 0.22 2.4

79

A Appendix

Table A.4: Comparison of the communication costs and setup and online run-times of EPPKEP
for the three networking configurations A: LAN + 10 Gb/s, B: LAN + 1 Gb/s,
C: WAN, and for cycle length L = 2. This table contains the individual costs of
Part 3 (Cycle Evaluation) [BHK+22].

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Part 3: Cycle Evaluation

2 0.1 0 0.0045 0.005 0.039 0.0097 0.0079 0.31
3 0.3 0 0.018 0.013 0.11 0.018 0.02 0.42
4 0.7 0.1 0.045 0.026 0.12 0.03 0.037 0.54
5 1 0.1 0.068 0.036 0.14 0.04 0.054 0.72
6 2.2 0.1 0.088 0.061 0.2 0.071 0.1 0.86
7 2.9 0.2 0.13 0.08 0.65 0.084 0.1 0.5
8 3.8 0.2 0.13 0.11 0.81 0.098 0.11 0.49
9 6.3 0.3 0.17 0.12 1 0.13 0.14 0.57

10 8.6 0.4 0.15 0.15 1.3 0.16 0.17 0.58
12 13.4 0.5 0.19 0.21 1.7 0.21 0.25 0.62
14 35 0.9 0.41 0.42 3.7 0.48 0.54 0.93
16 57.3 1.3 0.7 0.66 5.7 0.72 0.79 1.2
18 90.2 1.8 1 1 8.6 1.1 1.1 1.5
20 181.2 3.3 2 2 17 2 1.9 2.3
22 255.2 4.4 2.8 2.8 23 2.6 2.5 3
24 332.8 5.3 3.8 3.7 30 3.3 3.3 3.8
26 431.8 6.5 4.9 4.9 39 4.3 4.2 4.7
28 514.4 7.2 6.2 5.8 46 5 4.9 5.4
30 635.1 8.4 7.7 7.3 57 6.2 6.1 6.6
32 815.8 10.4 10 9.3 73 7.8 7.7 8.2
34 1,037.4 12.8 13 12 92 10 9.8 11
36 1,292.4 15.4 16 15 110 12 12 13
38 1,567.8 18 21 18 140 15 15 16
40 1,894.4 21.2 25 22 170 18 18 19

80

A Appendix

Table A.5: Comparison of the communication costs and setup and online run-times of EPPKEP
for the three networking configurations A: LAN + 10 Gb/s, B: LAN + 1 Gb/s,
C: WAN and for cycle length L = 2. This table contains individual costs of Part 4
(Solution Evaluation) [BHK+22].

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Part 4: Solution Evaluation

2 0 0 0.0027 0.0021 0.027 0.0035 0.0036 0.22
3 0.1 0 0.0096 0.0095 0.34 0.013 0.013 0.75
4 0.2 0 0.014 0.013 0.44 0.025 0.025 1.4
5 0.2 0 0.014 0.013 0.46 0.026 0.025 1.4
6 0.7 0.1 0.03 0.027 0.66 0.057 0.055 2.6
7 0.7 0.1 0.029 0.027 0.65 0.057 0.056 2.6
8 0.7 0.1 0.029 0.028 0.66 0.056 0.056 2.6
9 1.8 0.1 0.055 0.05 0.8 0.1 0.098 3.7

10 2.6 0.2 0.068 0.069 0.88 0.13 0.12 4.3
12 3.6 0.2 0.084 0.086 0.95 0.16 0.16 4.9
14 25.9 1.1 0.18 0.23 2.2 0.53 0.51 10
16 52.4 1.9 0.28 0.41 3.7 0.84 0.84 14
18 102.8 3.3 0.46 0.72 6.5 1.5 1.5 18
20 397.1 10.5 1.5 2.3 25 5.5 5.5 33
22 637 15.8 2.3 3.4 38 9.1 9.1 41
24 869.5 20.8 3.1 4.4 49 13 13 48
26 1,205.1 27.7 4.7 6.1 67 20 18 57
28 1,372 31.2 5 6.8 77 23 20 62
30 1,750.6 38.8 6.6 8.4 92 29 26 72
32 2,526 54.1 8.9 12 130 39 39 91
34 3,611.5 75 12 17 190 57 56 120
36 4,970.5 100.6 16 23 260 79 79 150
38 6,469 128.5 21 30 330 100 100 180
40 8,435.3 164.5 28 39 430 140 140 220

81

A Appendix

Table A.6: Comparison of the communication costs and setup and online run-times of EPPKEP
for the three networking configurations A: LAN + 10 Gb/s, B: LAN + 1 Gb/s,
C: WAN and for cycle length L = 3. This table contains the aggregated total
costs [BHK+22].

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Total

3 0.5 0.1 0.049 0.041 1 0.08 0.086 4.4
4 2 0.2 0.11 0.084 1.6 0.13 0.16 5.5
5 4.1 0.3 0.17 0.15 2.3 0.18 0.19 5.4
6 12.4 0.5 0.3 0.24 3.6 0.32 0.31 7.1
7 20 0.7 0.32 0.32 4.4 0.38 0.42 7.2
8 30.5 1.1 0.47 0.42 5.3 0.57 0.55 7.4
9 53 1.5 0.69 0.7 7.6 0.86 0.87 8.6

10 86.2 2.1 1.1 1.1 11 1.2 1.2 9.7
11 186.4 3.3 2.2 2.8 19 2.3 2.8 14
12 242.5 4.1 2.8 18 24 2.8 19 15
13 1,393.3 19.1 14 43 110 16 53 50
14 1,787.2 22.3 19 110 150 20 150 56
15 2,350.3 27 25 – 190 25 – 65
16 4,614.1 54.9 41 – 360 57 – 110
17 6,527.4 75.3 57 – 500 76 – 140
18 12,121.4 148 99 – 880 150 – 230

82

A Appendix

Table A.7: Comparison of the communication costs and setup and online run-times of EPPKEP
for the three networking configurations A: LAN + 10 Gb/s, B: LAN + 1 Gb/s,
C: WAN and for cycle length L = 3. This table contains the individual costs of Part
1 (Compatibility Matching) [BHK+22].

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Part 1: Compatibility Matching

3 0.1 0 0.0091 0.0095 0.33 0.046 0.046 3
4 0.1 0 0.011 0.011 0.44 0.047 0.047 3
5 0.2 0 0.013 0.012 0.45 0.048 0.048 3
6 0.2 0 0.015 0.015 0.52 0.049 0.049 3
7 0.3 0 0.017 0.017 0.55 0.051 0.051 3
8 0.4 0 0.021 0.018 0.54 0.053 0.052 3
9 0.5 0 0.023 0.021 0.62 0.054 0.055 3

10 0.6 0 0.026 0.024 0.64 0.058 0.059 3
11 0.7 0 0.029 0.029 0.64 0.064 0.068 3
12 0.9 0 0.032 0.037 0.69 0.07 0.074 3
13 1 0 0.035 0.045 0.74 0.072 0.082 3
14 1.2 0 0.039 0.052 0.79 0.073 0.087 3
15 1.4 0 0.043 – 0.75 0.078 – 3
16 1.5 0 0.046 – 0.78 0.081 – 3
17 1.7 0 0.052 – 0.79 0.084 – 3
18 1.9 0 0.055 – 0.83 0.089 – 3

83

A Appendix

Table A.8: Comparison of the communication costs and setup and online run-times of EPPKEP
for the three networking configurations A: LAN + 10 Gb/s, B: LAN + 1 Gb/s,
C: WAN and for cycle length L = 3. This table contains the individual costs of Part
2 (Cycle Computation) [BHK+22].

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Part 2: Cycle Computation

3 0.1 0 0.015 0.014 0.56 0.013 0.013 0.76
4 0.2 0 0.018 0.017 0.66 0.015 0.014 0.76
5 0.4 0 0.026 0.023 0.83 0.017 0.016 0.76
6 0.7 0.1 0.032 0.029 0.96 0.02 0.018 0.77
7 1.1 0.1 0.042 0.039 1.1 0.022 0.021 0.77
8 1.6 0.1 0.054 0.047 1.2 0.024 0.022 0.77
9 2.2 0.2 0.065 0.061 1.3 0.027 0.024 0.77

10 2.9 0.2 0.083 0.077 1.4 0.032 0.03 0.78
11 3.8 0.3 0.1 0.11 1.5 0.033 0.036 0.78
12 4.9 0.3 0.12 0.14 1.6 0.039 0.045 0.79
13 6.2 0.4 0.13 0.15 1.8 0.042 0.053 0.8
14 7.6 0.4 0.13 0.18 1.8 0.046 0.067 0.81
15 9.3 0.5 0.14 – 1.9 0.05 – 0.82
16 11.2 0.6 0.15 – 2 0.056 – 0.83
17 13.4 0.7 0.16 – 2.2 0.062 – 0.93
18 15.8 0.8 0.17 – 2.2 0.066 – 0.89

84

A Appendix

Table A.9: Comparison of the communication costs and setup and online run-times of EPPKEP
for the three networking configurations A: LAN + 10 Gb/s, B: LAN + 1 Gb/s,
C: WAN and for cycle length L = 3. This table contains the individual costs of
Part 3 (Cycle Evaluation) [BHK+22].

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Part 3: Cycle Evaluation

3 0.3 0 0.022 0.015 0.11 0.018 0.024 0.43
4 1.6 0.1 0.073 0.046 0.15 0.055 0.078 0.69
5 3.4 0.2 0.12 0.11 0.65 0.095 0.11 0.54
6 10.8 0.4 0.22 0.17 1.5 0.19 0.19 0.57
7 17.9 0.6 0.24 0.24 2.1 0.25 0.3 0.69
8 27.8 0.8 0.37 0.33 2.9 0.43 0.42 0.86
9 49.1 1.2 0.56 0.58 4.9 0.69 0.71 1.1

10 80.6 1.7 0.95 0.93 7.7 1 0.98 1.4
11 172.4 2.6 1.9 2.6 16 1.9 2.4 2.2
12 227.3 3.3 2.6 15 21 2.4 12 2.8
13 1,005.9 9.1 13 36 89 9.6 28 9.9
14 1,329.9 10.7 17 83 120 13 69 13
15 1,773.8 12.8 23 – 160 16 – 17
16 3,058.3 20.8 36 – 270 29 – 29
17 4,213.3 26.5 49 – 370 39 – 40
18 6,735.8 42 81 – 590 69 – 69

85

A Appendix

Table A.10: Comparison of the communication costs and setup and online run-times of
EPPKEP for the three networking configurations A: LAN + 10 Gb/s, B: LAN +
1 Gb/s, C: WAN and for cycle length L = 3. This table contains the individual
costs of Part 4 (Solution Evaluation) [BHK+22].

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Part 4: Solution Evaluation

3 0 0 0.0027 0.0027 0.032 0.0036 0.0038 0.22
4 0.1 0 0.01 0.011 0.37 0.017 0.017 1.1
5 0.1 0 0.0099 0.0098 0.35 0.018 0.017 1.1
6 0.7 0.1 0.029 0.027 0.65 0.057 0.056 2.8
7 0.7 0.1 0.028 0.026 0.64 0.057 0.057 2.8
8 0.7 0.1 0.028 0.026 0.66 0.057 0.055 2.8
9 1.3 0.1 0.039 0.038 0.76 0.083 0.082 3.7

10 2.1 0.2 0.06 0.054 0.84 0.12 0.12 4.5
11 9.4 0.5 0.12 0.12 1.3 0.33 0.32 8
12 9.4 0.5 0.12 2.4 1.3 0.33 6.8 8
13 380.2 9.6 1.5 7.5 23 5.8 24 37
14 448.5 11.1 1.7 25 28 6.9 83 40
15 565.8 13.6 2.1 – 34 9 – 44
16 1,543.1 33.4 5.3 – 83 28 – 73
17 2,298.9 48.1 7.7 – 120 37 – 92
18 5,367.9 105.2 18 – 280 83 – 160

86

A Appendix

Table A.11: Comparison of the setup and online run-times of EPPKEP for the reduced medi-
cal factor compatibility matching and the full set in the two main networking
configurations A: LAN + 10 Gb/s, C: WAN [BHK+22].

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A C A C

Reduced Medical Factor Set

2 0.1 0 0.0084 0.34 0.045 3
50 14.9 0.3 0.14 1.7 0.26 3.4

100 59.8 1.1 0.29 4.4 0.81 4.4
150 134.7 2.5 0.55 8.5 1.9 5.8
200 239.5 4.4 0.91 15 3.8 7.7
250 374.4 6.9 1.4 23 6.4 11
300 539.2 9.9 2 31 9.4 14
350 734 13.4 2.5 41 14 20
400 958.8 17.5 3.2 53 18 26
450 1,213.6 22.1 4.2 65 25 32
500 1,498.3 27.3 5.3 80 31 37
550 1,813.1 33 6.3 96 38 48
600 2,157.8 39.3 7.2 110 45 56
650 2,532.5 46.1 9 130 53 64

Full Medical Factor Set

2 0.1 0 0.013 0.88 0.047 3.4
50 44 11.8 0.51 4.6 1 5.2

100 177.1 47.1 1.3 14 4.7 12
150 399.2 105.9 2.8 29 12 24
200 710.5 188.3 5.1 48 22 41
250 1,110.9 294.3 7.6 71 35 64
300 1,600.4 423.8 12 100 51 92
350 2,179.1 576.8 14 140 66 120
400 2,846.8 753.4 18 180 86 160
450 3,603.7 953.5 23 230 110 200
500 4,449.6 1,177.2 28 280 140 250
550 5,384.7 1,424.4 35 340 170 300
600 6,408.9 1,695.2 41 410 200 350
650 7,522.2 1,989.5 48 480 240 420

87

A Appendix

A.2 Fitting Models

We present the models we used to extrapolated the missing measurements. For all network
settings we used the general model:

f (x) = a · x b + c

The parameters were computed in Matlab 2021a (9.10.0.1602286) with the Trust-Region
algorithm with a maximum of 400 iterations.

LAN10:
Coefficients (with 95% confidence bounds):

a = 5.437 · 10−6 (−1.1162 · 10−5, 2.249 · 10−5)

b = 8.484 (7.392,9.576)

c = 1721 (−3373,7815)

Goodness of fit:

SSE: 6.681 · 108

R-square: 0.9907

Adjusted R-square: 0.9893

RMSE: 7169

LAN1:
Coefficients (with 95% confidence bounds):

a = 1.032 · 10−5 (−9.383 · 10−7, 2.159 · 10−5)

b = 8.285 (7.906,8.663)

c = 329.3 (−1314,1973)

Goodness of fit:

SSE: 3.889 · 107

R-square: 0.9994

Adjusted R-square: 0.9993

RMSE: 2079

WAN:
Coefficients (with 95% confidence bounds):

a = 0.0002595 (−0.000441,0.00096)

b = 7.658 (6.718,8.598)

c = 1.335 · 104 (−8887, 3.3559 · 104)

88

A Appendix

Goodness of fit:

SSE: 1.203 · 1010

R-square: 0.9915

Adjusted R-square: 0.9902

RMSE: 3.042 · 104

89

	Introduction
	Contributions
	Outline

	Preliminaries
	Medical Background
	Human Leukocyte Antigens
	ABO System
	Age
	Sex
	Weight

	Cryptographic Background
	Secure Multi-Party Computation
	ABY Framework
	Secure Outsourcing

	Graph Background
	Graph Theory
	Kidney Exchange Problem

	Related Work
	Non Privacy-Preserving Solutions
	Robust Models for the Kidney Exchange Problem
	Medical Analysis for Evaluating Compatibility in Kidney Exchange

	Privacy-Preserving Solutions
	A Privacy-Preserving Protocol for the Kidney Exchange Problem
	Privacy-Preserving Maximum Matching on General Graphs and its Application to Enable Privacy-Preserving Kidney Exchange
	Secure Graph Analysis at Scale
	Privacy-Preserving Linear Programming

	Design and Implementation
	Problem Statement
	Notation
	Compatibility Matching
	Overview
	HLA Cross-Match
	HLA Matching
	Blood Type Matching
	Age Matching
	Sex Matching
	Weight Matching
	Complexity Assessment

	Cycle Computation
	Overview
	Protocols
	Complexity Assessment

	Cycle Evaluation
	Overview
	Protocols
	Complexity Assessment

	Solution Evaluation
	Overview
	Protocols
	Complexity Assessment

	Overall Complexity Assessment

	Evaluation
	Security Discussion
	Performance Benchmarks
	Comparison to State-of-the-Art

	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography
	Appendix
	Full Benchmarks
	Fitting Models

