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Abstract

Private Function Evaluation (PFE) is a cryptographic protocol, which allows two or more
parties to securely compute a function, such that only one party knows the function and
every party can contribute inputs to the function without revealing them. The only revealed
information is the function output. Less secure approaches, which are referred to as Semi
Private Function Evaluation (SPFE), may leak some metainformation of the function, by
which the private function can be narrowed down to a smaller subset of all functions, while
improving the performance of the protocol (memory consumption, time of evaluation etc).
Several different approaches for PFE have already been proposed including a reduction to
Secure Function Evaluation (SFE), which evaluates a public function on private inputs.

This is achieved by constructing special public functions called Universal Circuits (UC) which
can be programmed to represent an arbitrary boolean circuit up to a certain size, thus hiding
the private function inside of the UC as programming information. Past constructions of UCs
used circuits with gates of at most 2 inputs and 1 output (Boolean AND, OR, XOR gates etc).
With the advent of more efficient evaluation of larger Look Up Tables (LUTs) we may improve
the size and evaluation cost of our Universal Circuits by replacing the Universal Gates of
[AGKS20] by larger Universal LUTs (ULUT), programmable LUTs with multiple inputs and
outputs. Thus we propose two modified UC constructions, based upon the constructions of
[Wig21], which allowed for the embedding of circuits with multi input-single output LUTs.
The fixed construction, which accomodates multi input-multi output ULUTs with a parameter
k for the maximum number of inputs and outputs per ULUT, is fully private up to the amount
of LUTs used and the parameter k. The dynamic construction, which leaks more detailed arity
information of each ULUT, yields a smaller UC size and can thus be evaluated cheaper in MPC.
We argue the correctness of these constructions and give complexity bounds of their size. We
achieve an overall size improvement relative to [Wig21] for most of the tested circuits in the
fixed construction, and in all tested circuits a a significant (≈ 22%) improvement with the
dynamic construction.
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1 Introduction

Private Function Evaluation (PFE) is a cryptographic protocol, which allows two or more
parties to compute a function collaboratively so that only one of the parties knows the exact
function to be computed and all parties only know their own input to the function. The
result of the function can be revealed to an arbitrary subset of the involved parties. Without
loss of generality, we restrict the class of functions we want to be able to compute in PFE to
combinatorial boolean circuits. PFE can be weakened to Semi Private Function Evaluation
(SPFE) [PSS09; GKSS19], where we leak further aspects of the function, like more specific
size information or entire parts of a function. This may be useful as it requires less resources
to compute parts of the function that do not reveal important segments of it.

Private Function Evaluation can be accomplished by creating a special boolean circuit called
a Universal Circuit (UC) [Val76]. A Universal Circuit can embed an arbitrary combinatorial
Boolean function f up to some some size n= u+ g + v where u is the number of inputs, g
the number of gates and v the number of outputs. The function f is then represented in
terms of a string p f called the programming of the universal circuit, which when given to the
programming inputs of the UC causes the UC to behave exactly as the function f on input
x:

UC(p f , x) = f (x).

If the universal circuit is now computed with a secure multi-party computation (SMPC) proto-
col such as Yao’s Garbled Circuit [Yao86] or the GMW protocol [GMW87], the programming
information is hidden as a secret input along with the function inputs, thus fullfilling the
privacy of the function by hiding its circuit topology and exact gates.

Some classes of functionalities, e.g., ripple carry adders or the AES block cipher make great
use of modularization (a ripple carry adder can be built from full adders and AES from
substitution boxes) to accomplish optimized circuit sizes and easily definable wire interfaces
between the submodules. Note also that any boolean circuit may be represented by Look Up
Tables instead of primitive gates like AND, OR, etc.

Previously in the work of [Wig21], PFE via UCs with multi input-single output LUTs has been
implemented, such that either all universal gates in a circuit have the same number of inputs,
or that the number of inputs dynamically adapts, in which case we only have SPFE, as we
can infer the arity of each LUT of the circuit, which may allow us to infer some information
about the circuit topology.

In this work, we want to exploit the benefits of abstraction into submodules with multiple
inputs and multiple outputs by providing a notion of encapsulation of larger substructures
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1 Introduction

into singular gates inside of universal circuits. These gates which we refer to as Universal
Look Up Tables (ULUTs) accommodate multiple inputs as well as multiple outputs and are
programmable in their look up tables. This improvement requires modifications of the two
previous construction algorithms of [Wig21], which only embedded functions where each
gate had multiple inputs but at most 1 output (which could be used multiple times), in
order to support multiple different outputs per LUT. The first construction is called the fixed
construction achieving full privacy of the function while only leaking the size of the circuit
and maximum input and output arity of the gates occurring in it. The second construction,
called dynamic, reveals more precise arity information about each gate but still hides the
topology of the entire function, which leaks less information than previous SPFE frameworks
and yields a size improvement. Reducing the size of a universal circuit is the primary target
of our optimization, as the amount of AND gates inside of the universal circuit dictates the
amount of memory and communication overhead required in the MPC protocol (in Yao’s
protocol [Yao86], each AND gate requires a garbled table and thus more information to be
transmitted).

1.1 RelatedWork

Secure Multi Party Computation (MPC) was first proposed by [Yao86] to solve the millionaires’
problem. The first recursive construction of Universal Circuits (UC), based on so called Edge
Universal Graphs (see §2.0.5), was given by [Val76]. The construction of these Edge Universal
Graph-based UCs was improved significantly by [LYZ+21], reducing the asymptotic complexity
from ≈ 4.5n log n to ≈ 3n log n where n is the size of the embedded circuit. [KS16; AGKS20;
GKS17; ZYZL19] modularized the construction, reducing the memory overhead of the UC
compiler and allowing for further combination of different construction methods into hybrid
UCs with adaptable recursion parameters.

[KS08; SS09] already proposed different constructions for more specialized UCs with multiple
(d) inputs and one output, which obliviously route bundles of input wires between the gates.
Their first iterative construction has complexity O(n2 log d). Their second construction uses
three types of modules (input selection, output selection and a generalized universal blocks)
and achieves complexity O(dn log2 n). The third construction uses the recursive nature of
[Val76] and modifies a circuit to have a fanin and fanout of at most d with some overhead.
The first two constructions are more beneficial for smaller circuits to be embedded, while
the third construction may be used for larger circuits, and is related to our work in the sense
that in it a circuits fanout is reduced before passing it to a d-way generalization of a classical
construction like Valiant’s. [Wig21] provides a UC compiler upon which our improvement
is built. It already addresses the creation of multiple inputs for the use of Look Up Tables
with a single output while including an implementation of [LYZ+21]. It provides a fixed
construction, which parallelizes classical constructions on the EUG level, aswell as a dynamic
construction, which uses pre-processing of the circuit to be embedded and post-processing of
the universal circuit to better adapt to circuits with LUTs of varying input sizes.
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1 Introduction

Our work extends both the fixed and dynamic construction of [Wig21] to allow for an arbitrary
amount of distinct outputs for each LUT and also adapts the post-processing for the dynamic
approach for varying output sizes.

More generally, other approaches for PFE have already been proposed:

1. Based on Partial Homomorphic Encryption [KM11], this yields a linear complexity in
the size of the circuit (instead of n log n), while still requiring homomorphic encryption,
which is more expensive to instantiate than symmetric encryption. This approach was
optimized and implemented in a highly efficient manner by [HKRS20].

2. Permutation Networks [MS13; MSS14], which use oblivious permutations to hide circuit
topologies in a computation and separately securely evaluate gates on the permuted
inputs in rounds. They operate with asymptotic complexity n log n and only require
symmetric encryption.

3. Trusted Execution Environments, which are specific subcomponents of computer pro-
cessors (e.g. Intel SGX Platform) may be used as a secure enclave inside of one of the
parties for computing special cryptographic functionalities. [FKSW19] demonstrated
efficient PFE which was resilient against side channel attacks, by evaluating UCs inside
of a SFE protocol that was adapted specifically for the specialized hardware secured
environment.

1.2 Applications

Private Function Evaluation can be of practical use in online computations that have algo-
rithms, which are trade secrets (proprietary algorithms), at especial risk of security under
leakage (information about the operational structure of institutions, which is a necessary part
of the algorithm, but may allow for attacks on that institution) or inputs of the computation,
that are protected under privacy law (sensitive personal information, address data) or that
the party might not want to share (properties which do not uniquely identify that individual,
but are still highly personal). For example institutional Credit Checking and Scoring of private
individuals is a common and useful application [FAZ05] of PFE, as it hides trademarked
algorithms determining insurance/credit rates as well as sensitive transaction histories and
personal information of customers. In [SS09] the more specific usage of UCs with multiple
inputs was shown for the evaluation of Neural Networks, while hiding the exact topology
of the neural network. Universal Circuits may be used in other cryptographic applications
like improving the Verifier workload in non interactive zero knowledge proofs [GGPR13] or
performing attribute-based encryption with circuits [GVW15]. [FVK+15] also demonstrates
the usage of PFE for Database Management Systems which allow for querying of data and
revealing neither the querying algorithm nor the entire dataset on which the query operates.
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1.3 Contributions

We propose, based on the UC compiler of [Wig21], an improved fixed construction based
on Look Up Tables with multiple (>2) inputs and multiple (>1) outputs (cf. § 4.3), thus
further reducing size requirements and also improving computation based on specific LUT
related SFE improvements [DKS+17]. This comes at the cost of revealing some information
on the embedded function, more specifically the input and output arity information of LUTs
used inside the circuit. We also propose an improved dynamic construction that leaks the
fanin and fanout of each gate embedded (cf. § 4.4) and produces a UC that has smaller size
but is only semi-private. Note that the two constructions rely on atleast one of the two EUG
constructions presented in § 3.

We benchmark exemplary circuits for arithmetic (ripple carry adder, karatsuba multiplier
cf. § 5.3) as well as some cryptographic example circuits (AES,DES, SHA 256 cf. §5.4) and
compare the results with prior work. We outline the complexities of all the presented construc-
tions and explain their correctness. We achieve an ≈ 35% size improvement over [Wig21] for
circuits of arithmetic functions in the dynamic construction and a 18% improvement in the
fixed construction. We achieve an improvement of ≈ 15% in cryptographic circuits tested.
We outline the overall behavior of our construction methods under more general settings
(cf. § 5.5). We also give a method for deriving size and fanout optimized multi input-multi
output LUT based circuits from arbitrary combinatorial Boolean circuits (cf. § 5.1.2).
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2 Preliminaries

In this section we introduce some mathematical tools to describe graphs before we can study
the different UC constructions. The mathematical definitions are largely identical to those of
[Wig21], but with slight simplifications for brevity’s sake.

We denote all graphs by G = (V, E) such that E ⊆ V × V , where V denotes the set of vertices
(or nodes) and E the edge relation on these vertices. Later we may also use the Notation
G = (V, E) = ((P, N), E), where V = P ∪ N with N ∩ P = ∅. P describes the set of so called
poles which are special nodes that represent the nodes to be embedded inside the graph of the
UC and are connected by the remaining nodes N in paths, in order to hide their connections.
We state for G = (V, E) and G′ = (V ′, E′) the subset relation as G ⊆ G′ ⇐⇒ V ⊆ V ′ ∧ E ⊆ E′.
Distinguishing properties of graphs are both their arities, as well as occurring cycles, which
allow us to make certain assertions about them, such as the embedding properties we will
need in our constructions.

Definition 2.0.1. We define the following arities of graphs.

1. the indegree of a vertex v is δ+(v) = |{u ∈ V : (u, v) ∈ E}|.

2. the outdegree of a vertex v is δ−(v) = |{u ∈ V : (v, u) ∈ E}|.

3. the in/outdegree of a graph is given by δ+/−(G) = max{δ+,−(v)|v ∈ G}.

We also define the predicate isPath as follows.

Definition 2.0.2. We define in a Graph G = (V, E) for arbitrary E′ ⊆ E and u, v ∈ G:

isPath(u, v, E′) ⇐⇒ ∃n ∈ N : ∃n
i=1ei = (ui , vi) ∈ E′ : u1 = u∧ vn = v ∧∀ j < n : vi = ui+1

isPath states, that there is a chain of edges in the defined subset, such that the first edge starts
at vertex u and the last edge ends at vertex v.

Definition 2.0.3. A directed acyclic graph (DAG) is a graph G = (V, E) in which the edge
relation is strictly irreflexive and antisymmetric

∀x , y ∈ V : ((x , y) ∈ E→¬((y, x) ∈ E))∧∀x ∈ V : ¬((x , x) ∈ E).

5



2 Preliminaries

A DAG may not include paths (sequences of edges) that contain a vertex twice, i.e, it has not
cycles.

∀u ∈ V : ∀E′ ⊆ E : ¬(isPath(u, u, E′)).

We denote the class of all DAGs with max(δ−(G),δ+(G)) = ρ and |V |= n as Γρ(n).

Another important property of graphs is their so called edge coloring index. We use it in the
UC constructions to prove, that the task of edge embedding a graph can be divided k sub
problems, such that each sub problem only needs to edge embed a sub graph with special
fanin/fanout and combining the sub solutions in a non interfering way. The parameter k is
then precisely this edge coloring index.

Definition 2.0.4. Let G = (V, E) be an arbitrary graph. We define the edge coloring index as:

χ(G) =min{|image( f )|| f ∈ Colorings(G)}.

where we define the colorings by:

Colorings(G) = { f : V ×V → N|∀x , y, z ∈ V : ((x , y) ∈ E∧(x , z) ∈ E)→ ( f (x , y) ̸= f (x , z))}

i.e., χ(G) is the smallest amount of colors necessary to color all adjacent edges differently.

A first important basic result for DAGs is that we can bound their edge coloring index (the
amount of colors necessary to color all adjacent edges pairwise differently) by the fanin/fanout
as follows. The proof and derived coloring algorithm was given in [Die17], with the proof
slightly modified to be more informal.

Theorem 2.0.1. The following equivalent statements hold:

1. König-Hall Theorem [Die17]: Any G′ ∈ Γρ(n) has at least one ρ coloring.

2. Any bipartite G has χ(G)≤∆(G) where ∆(G) =max(δ−(v) +δ+(v)).

Note that the two statements are equivalent, because edges that are adjacent in G′ will
be adjacent in an associated product graph that is bipartite. We will describe this graph
in Theorem 2.0.2. Since the neighboring can be preserved between these two graphs, the
coloring index is also preserved.

Proof. The case in which more colors than the maximum degree are available is trivially
solvable as we can enumerate all edges of some node and pick a new color for each adjacent
edge without a conflict in colors. The opposite case where we constraint the number of
colors now to be at most the maximum degree is less trivial. We prove by induction over the
cardinality of the edge set.

Case 1 (Induction Base). Assume any bipartite G with |E|= 1.

6



2 Preliminaries

Here we simply color the one edge with the one color we must use.Therefore ∆ = 1 and
χ(G) = 1 which suffices.

Case 2 (Induction Step). As Induction Hypothesis we assume, that we can color any bipartite G
with |E|= m with χ(G)≤∆.

We now want to color a bipartite supergraph G′ = (V ′, E′), G ⊆ G′ such that |E′|= m+ 1.

We remove an arbitrary edge e′ = (u, v) such that we get a smaller edge set. By induction
hypothesis we now get a fitting coloring of this smaller graph with∆ colors, since we removed
one edge and the graph is still bipartite.

We want to add the edge back that we removed previously, while adjusting the coloring. Note
that δ+(u),δ−(v)≤∆− 1 and thus each of the nodes has at least one unused color. By case
distinction u and v both have either at least one shared unused color or each of them has at
least one distinct unused color, while one of them is used by the other.

In the former case we assign that color to e′ and thus get a full coloring, closing the Induction.

In the latter case we need to slightly change the prior coloring of the graph. Then there exists
a color β so that for some edge (u,∗)→ β and for no (∗, v)→ β and a color α ̸= β that has
no (u,∗)→ α. Now there must exist at least one longest alternating α− β path starting with
that β edge e∗ (e∗→ β). We also note that all β edges point from one side of the bipartite
graph to the other while all α edges inside the walk vice versa, by the nature of bipartite
graphs and the alternating path.

We thus may conclude that there are no cycles in this path, as they would either induce a
wrongful coloring (which by induction hypothesis could not exist) as well as no loop with u
as this would include an α edge starting in u which could not exist by our choice of α. Also v
( ̸= u) may not be in this path because as it sits on the opposite side of u it must have a β edge
incoming which was also not possible. Therefore this longest possible path with alternating
edges starting with β is entirely filled with unique nodes and may not contain v only u. If we
now flip all the colors on this path (α to β and vice versa) we still have a valid coloring of the
graph as every node only uses α and β at most once and still does afterwards. If we color the
back added edge β this is possible because we swapped e∗ to α and v never had a β edge.

Note that while we provided the argument here where u was implicitly on the left side this
may be arbitrarily switched and the argument stays the same.

This proof yields by proof mining the natural Algorithm 2.1 for edge coloring a DAG, where
the first case of the induction step represents the greedy choice of new colors for the graph
and the second case follows this up by a subsequent correction step.

On a side node, it is trivial to see why a bipartite graph with in- and outdegree 2 can be
2-colored by coloring an initial edge randomly, and coloring all subsequent edges with
alternating colors via depth-first search, thus having an algorithm that can be performed very
fast. This algorithm can be further improved by a plethora of (probabilistic) graph algorithms
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2 Preliminaries

Algorithm 2.1 k− edge− color(G)
Input: bipartite graph G = (V, E)

Output: k edge coloring of G
1: ∆←maxv∈G{degG(v)}
2: for Edge e = (u, v) ∈ E without color do
3: if there is a color i≤∆ that does not occur in any of the neighboring edges of e then
4: e.color ← i
5: else
6: Choose β s.t. e′.color= β for some e′ = (u, v′) and ∀e∗ = (u′, v) : e∗.color ̸= β
7: Choose α ̸= β s.t. it is not used by edge going to u
8: Swap colors of longest β −α alternating path starting with e′

9: e.color← β
10: end if
11: end for

(e.g. [Alo03]), as the edge-coloring-problem in general is well understood. We now use the
previously attained result in order to partition a DAG into several DAGs of lower in- and
outdegree.

Lemma 2.0.2. Every graph G ∈ Γρ(n) can be partitioned into ρ Γ1(n) sub graphs.

Proof. Let G = (V, E). First we build a special product graph of our original graph G′ = (V ′, E′)
such that

V ′ = V ∪ {v′ : v ∈ V}.

E′ = {(u, v′)′ : (u, v) ∈ E ∧ v′ is the copy of v as above}.

This transformation amounts to duplicating the nodes and relaying the edges to the new
right side of the bipartite graph. We now utilize the algorithm described in the previous
Theorem 2.0.1. Since every node in the bipartite graph has only in- or outgoing edges and
thus at most degree ρ we can color the edges of bipartite graph with at most ρ colors. Now
to get the final partition we setup for i ∈ [ρ].

Gi = (Vi , Ei), Vi = V Ei = {e ∈ E : χ(e′) = i}.

i.e., we create one copy of the original graph for every color, whilst only including the edges
of color i in the i-th copy-graph. Since every edge has exactly one color and every color has
one sub graph we have

⋃︂

1≤i≤ρ
Gi = G.

Note also that due to the coloring restriction, every node has exactly in/outdegree at most 1
(else we would have a coloring violation).

8



2 Preliminaries

These partition graphs are later used in all our constructions, as every partition graph of the
DAG to be embedded into an EUG will get mapped into its own copy of an Valiant or Liu
EUG, which by construction each may only accommodate graph with fanin 1.

We will now define EUGs.

Definition 2.0.5. An Edge Universal Graph on the class Γρ(n) (ρ − EUG)
is a special graph G = ((P, N), E) such that for every DAG G′ = (P, E′) ∈ Γρ(n) it holds, that for
any e1 = (pi , p j) ̸= e2 = (pk, pl) ∈ E′ with i < j ∧ k < l according to topological order:

∃E1, E2 ⊆ E′ : (E1 ∩ E2 = ∅)∧ isPath(pi , p j , E1)∧ isPath(pk, pl , E2).

i.e., every DAG with at most n nodes, can be embedded with edge disjoint paths into the EUG,
based on the topological order of the graph. The set P of distinguished nodes defines the set
of pole nodes, which represent the original nodes of the graph to be embedded. Alternatively,
one may define the embedding property by maps from an arbitrary vertex set to the poles,
but this is only a slight notational difference which would make the correctness proof more
difficult (but is more natural from an implementation understanding). It should also be noted
here that, while the DAG to be embedded has to be acyclic by definition, the same does not
necessarily hold for the EUG. This is used by the construction of [LYZ+21] in order to further
improve the size of EUGs. Finally an EUG with cycles has to be modified into an acyclic one
too however, as it has to be instantiable as a boolean circuit in MPC protocols.

As it would be unwieldy to produce ρ-grade EUGs immediately, we instead construct just
1-EUGs and merge them. This works in tandem with the partitioning of the DAG outlined
earlier.

Theorem 2.0.3. A ρ-EUG G = ((P, N), E) and a σ-EUG G′ = ((P, N ′), E′) can be merged into a
(ρ +σ)-EUG G′′ = ((P, N ′′), E′′).

Proof. We simply merge the EUGs at the poles, i.e., G′′ = ((P, N ∪ N ′), E ∪ E′). If we now
have a DAG G∗ ∈ Γρ+σ(n) then for any vertex we route the first ρ outgoing edges over the
same edges as in G and the consecutive σ possible edges over the same edges as in G′. Since
the two edge sets are disjoint, the new paths must also always be disjoint. We also know that
all possible ρ+σ edges could be embedded as they were well defined previously by the edge
embeddings of the original EUGs, because both EUGs had the same set of poles that could be
connected.
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3 RelatedWork

In this section we give an overview of the necessary constructions for Edge Universal Graphs
(EUG) to produce UCs. We consider the simpler Valiant 2-way construction [Val76] to
understand the basic principle of embedding in an easier setting, as well as the more complex
Liu et al’s [LYZ+21] 2-way construction, which produces a smaller EUG size. The construction
of Liu et al. is based on Valiants construction, and works very similar in both the structure of
recursion and the embedding, but makes use of an adjustment to cylical graphs in order to
achieve a smaller size. We also briefly discuss miscellaneous constructions and explain the
classical conversion process from a 2-EUG with its embedding of a graph into a Universal
Circuit with a programming of any circuit corresponding to the graph.

3.1 Valiants (2-Way) Construction [Val76]

Valiant’s [Val76] 2-way Edge Universal Graph (EUG) construction with its subsequent UC con-
struction is the original UC construction. Among UC constructions, the recursive construction
approach is most beneficial if we consider circuits of large size (> 10000 gates) as its size
complexity (O(n log n)) scales better than most other approaches. The construction however
is outperformed e.g. by the iterative approach of [SS09] for small circuits (cf. § 3.3).

The basic concept behind Valiant’s construction relies on the recursive solving of the em-
bedding problem in smaller subgraphs, which may be considered as a representation of the
interface of the nodes, we wish to embed. We recall that the graph representation of the input
specific graph we want to embed into the EUG is built from n so called poles, which have
only degree 1, as we have split the original graph into subgraphs with this fanin/fanout (cf.
Theorem 2.0.2). We manually manufacture a small graph, called a k-way Superpole, which
allows the universal connection from some set of k input nodes I to a set of poles P inside the
Superpole, and subsequently connecting these poles to a set of k output nodes O such that any
embedding from these input nodes to the poles and output nodes with in/outdegree 1 may
be made. These Superpoles will essentially serve as the recursion anchor to our embedding
problem, as we can memorize the correct embeddings for these small handcrafted graphs.
The input and output nodes of the Superpole are also called recursion points because they
are the interfaces to sub graphs of the EUG which serve the recursive embedding process.

Now we connect many Superpoles together into a so-called skeleton such that they form a
chain connected at the recursion points. For n poles we will need ⌈ n

k ⌉ Superpoles, as each
Superpole will give us k poles to work with. Next, we repeat this skeleton construction

10
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recursively at the inner recursion points (we ignore the first and final recursion points). By
this we use the recursion step of our last skeleton as the pole sets for the next subskeletons;
we build the same chained Superpole construction but with the set of recursion points as
the poles from which we start. Note that at each recursion step, the number of poles to be
embedded decreases. If the amount of poles has come down to the size of a single Superpole,
we just have to use one Superpole as the recursion anchor. Finally, after having connected all
of these skeletons correctly, we may delete all unnecessary parts of our EUG, i.e, those that
have no possible path to any input or output of any pole.

We formalize the construction by the definition of EUGs we outlined in Definition 2.0.5, as
well as informally prove its correctness.

Definition 3.1.1. An Augmented k-way Valiant Block (V, E) with poles P, input nodes I and
output nodes O, to be embedded into a super block, needs to fullfill:

1. V = P ∪ I ∪O, P ∩ I = P ∩O = ∅, |I |= |O|= k.

2. Under Valiant’s construction especially I ∩O = ∅ holds.

3. ∆(G[P]) =∆((P, EP)) = 2 ,i.e., the fanin and fanout of all nodes is atmost 1.

4. E = EP ∪ E io, such that:

a) ∀e ∈ E io : (e = (in, p)∧ in ∈ I ∧ p ∈ P)∨ (e = (p, out)∧ p ∈ P ∧ out ∈ O).

b) ∀p ∈ P : ∃≤1in ∈ I : (in, p) ∈ E io.

c) ∀p ∈ P : ∃≤1out ∈ O : (p, out) ∈ E io.

Now we also define the Superpoles in which we want to embed these Valiant blocks.

Definition 3.1.2. A k-way Superpole G = (V, E, P, P ′, I , O) has the following properties:

1. P=P ′ ∪ I ∪O P ∩ I=∅ and P ∩O=∅.

2. ∀G′=(V ′, E′) ∈ Bk(P ′, I , O) : ∀e=(u, v), e′=(u′, v′) ∈ E′ : ∃E1, E2 ⊆ E : isPath(u, v, E1)∧
isPath(u′, v′, E2)∧ E1 ∩ E2=∅.

i.e., Superpoles can embed any Augmented Block with edge disjoint paths, while preserving the
inputs and outputs of the Block.

The most prominent example for a Superpole is the 2-way Superpole for Valiant’s construction
as in Fig. 3.1.

The graph of Fig. 3.2 shows how the main skeleton and methodology for the recursion of
sub-EUGs are laid out. The algorithm for creating the Valiant EUG is given in Algorithm 3.1
and edge embedding of a graph may be performed by Algorithm 3.2.
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Out1 Out2

Pi+1

Pi

In1 In2

Figure 3.1: Example of a Valiant 2-way Superpole

Algorithm 3.1 CreateValiantEUG(P, k)
Input: P pole nodes

k way-ness of EUG
Output: Γ1(n) EUG G = (V, E, P, G∗, {G i|1≤ i ≤ k})

1: V ← ∅
2: E← ∅
3: G∗← ∅
4: Os0

← k dummy nodes
5: for i← 1 to ⌈ n

k ⌉ do

6: Psi
← {pk(i−1)+1,....,pki

}
7: si = (V si

, Esi
, Psi

, Psi
, I si

, Osi
)← InstantiateSuperpole(Psi

, k)
8: G∗← G∗ ∪ {si}
9: V ← V ∪ V i , E← E ∪ E i

10: end for
11: for i← 1 to k do
12: if n≤ k then
13: G i ← (∅, ..,∅)
14: else
15: P i ← {Os1

[i], ..., Os⌈
n
k ⌉−1
[i]}

16: G i(V i , E i , ...)← CreateValiantEUG(P i , k)
17: V ← V ∪ V i , E← E ∪ E i

18: end if
19: end for
20: return G = (V, E, P, G∗, G1, ..., Gk)
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In/Out1 In/Out2

P6

P5

In/Out1 In/Out2

P4

P3

In/Out1 In/Out2

P2

P1

In1 In2

I/O1I/O2

I1 I2

I/O1I/O2

I1I2

Middle Lane

Left Sub-EUG Right Sub-EUG

Recursion Point
as Pole

(Main)
Pole Node

Figure 3.2: Example of a 2-way Valiant EUG with 6 poles annotated to describe the most
relevant features
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Algorithm 3.2 EdgeEmbedding(G, G′)

Input: Valiant EUG G = (V, E, P, G∗ = {s1, ..., s⌈
n
k ⌉}, G1, ..., Gk)

Graph to be embedded G′ = (P, E′) ∈ Γ1(n)
Output: Edge Embedding map ϕ : E′→ P(E)

1: if V = ∅ then
2: return ∅
3: end if
4: A1, ...,A⌈

n
k ⌉, R1, ...,Rk← PathFinding(G, G′)

5: for i← 1 to ⌈ n
k ⌉ do

6: ϕAi
← SuperpoleEdgeEmbedding(si , Ai)

7: end for
8: for j← 1 to k do
9: ϕR j

← EdgeEmbedding(G j , R j)
10: end for
11: ϕ← CombineEdgeEmbeddings(G, G′,ϕAi ,ϕRi)
▷ Stich all paths together, which overlap Superpole boundaries and copy in mappings
that stay inside of Superpoles, from the relevant Augmented Block

12: return ϕ

Note that this algorithm requires the subroutine given in Algorithm 3.3 to find the paths for
inside of Superpoles and between them by describing the Augmented Blocks as well as the re-
cursion graphs connecting the Superpoles. An intuitive algorithm for SuperpoleEdgeEmbedding
can be given for the finite descriptions of Superpoles by simple enumeration of all possible
Augmented Blocks.

The correctness of the construction and embedding are proven by Theorem 3.1.1.

Theorem 3.1.1. CreateValiantEUG(P, k) (cf. Algorithm 3.1) produces a k-way 1-EUG for which
EdgeEmbedding(G, G′) (cf. Algorithm 3.1) provides a mapping ϕ that correctly embeds any
G ∈ Γ1(|P|) into the EUG.

Proof. We argue the correctness of the algorithm line by line. First the path finding algorithm
PathFinding(G, G′) is invoked. It determines for each of the Superpoles the Augmented Valiant
Blocks Ai to be embedded into Superpoles i, as well as for each of the k sub-EUGs a graph,
which has to be embedded into the sub graph. Finally every Superpole is embedded according
to its Ai and the embedding is recursively repeated on every sub-EUG j with its graph R j.
Since eventually there are no more crossings needed between sub-EUGs (and there are no
more sub-EUGs), recursion anchors will always just be embeddings of the lowest singular
Superpoles.

PathFinding(G, G′) instantiates an abstract representation of the recursive embedding task
on the next layer, called a recursion graph R∼ which will contain all edges that cross between
Superpoles. This is done by creating for every Superpole an abstract representation of
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Algorithm 3.3 PathFinding(G, G′)

Input: Valiant EUG G = (V, E, P, G∗ = {s1, ..., s⌈
n
k ⌉}

Graph to be embedded G′ = (P, E′) ∈ Γ1(n)
Output: Augmented Valiant Blocks Ai , sub graphs Ri ∈ Γ (⌈ n

k ⌉ − 1)
1: for i← 1 to ⌈ n

k ⌉ do

2: Ai = (V Ai
, EAi
) = (I i ∪Oi ∪ P i ,∅)

3: end for
4: Ṽ R← {ini|1≤ i ≤ ⌈ n

k ⌉} ∪ {outi|0≤ i ≤ ⌈ n
k ⌉ − 1}

5: ẼR← ∅
6: R̃← (Ṽ R, ẼR)
7: for e = (u, v) ∈ E

′
do

8: si ← Superpole of u
9: s j ← Superpole of v

10: if i ̸= j then
11: ẼR← ẼR ∪ {(outi , in j)}
12: end if
13: end for
14: {R̃i = (Ṽ R, Ẽ i

R)} ← k− edge− color(R̃)
15: for l ← 1 to k do
16: IOl ← Poles of G l

17: Rl = (V l
R , E l

R)← (IOl ,∅)
18: for e = (outi , in j) ∈ Ẽ l

R do

19: E l
R← E l

R ∪ {(outi
l , in j

l )}
20: end for
21: end for
22: for e = (u, v) ∈ E

′
do

23: si ← Superpole of u
24: s j ← Superpole of v
25: if i = j then
26: EAi

← EAi
∪ {(u, v)}

27: Get unused (out i
x , in j

x) ∈ Rx

28: EAi
← EAi

∪ {(u, outi
x)}

29: EAj
← EAj

∪ {(ini
x , v)}

30: end if
31: end for
32: return all (Ai , Ri)

its interface in R∼ by adding a representative input and output node (the first and final
Superpole are missing the input and output node, respectively). For every edge (u, v) in G′,
PathFinding(G, G′) now determines if the nodes u and v are members of the same Superpole.
If not, it adds an edge into R∼ between the representative interface nodes of the two different
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Superpoles i and j. In the end R∼ must be a k colorable graph, because every pair of
Superpoles has k poles with in/outdegree 1, thus every two Superpoles may at most have k
edges between them. Thus, the algorithm may now edge-color the graph R∼ with k colors.
Finally, every Rl graph for the l-th sub-EUG is given, by picking the l-th output node of
the i Superpole, as well as l-th input nodes out of the j-th Superpole and adding the edge
between them to R j . (Since all the j-th input/output nodes over all Superpoles on the current
recursion step are the poles of the sub-EUG, they are the vertices of R j).

Now, in order to determine the edge embeddings for each of the super poles, we once again
consider all edges in E′. If the edge stays within the same Superpole i, (u, v) is added to Ai .
If not (u in i and v in j ̸= i), we already earlier determined the input/output nodes towards
which each edge is supposed to be headed. We now pick the first free l such that a pair
(out i

l , in j
l ) from R j is still available, and add (u, out i

l ) to Ai as well as (in j
l , v) to Aj. (By the

specification of the sub graphs R j there will always be an edge available).

The overall size (number of nodes) of the EUG is bounded by O(n log n) asymptotic complexity.
Note that a lower complexity is generally desired, as it allows us to scale our approach in the
MPC setting for larger circuits, and therefore larger functions.

Theorem 3.1.2. The size of a Valiant EUG as given by Algorithm 3.1, is bounded by:

|Superpolek|
k log2(k)

n log2(n) +O(n).

Proof. First we extract from the algorithm that the recursive relation in the size is bounded
by:

|Valk(n)| ≤ ⌈
n
k
⌉|Superpolek|+ k|Valk(⌈

n
k
⌉ − 1)|.

(As some nodes and edges will be removed as optimization, without having an effect on the
complexity).

We now prove the final bound by expansion of the recursive term. If the number of poles
satisfies |P| ≤ k, then it holds that |EUG| ≤ |Val(k)| = |Superpolek| as a single Superpole is
sufficient to represent those poles.

We may now expand the EUG size recursively as follows:

|EUG| ≤ |Valk(n)| ≤ ⌈
n
k
⌉|Superpolek|+ k|Valk(⌈

n
k
⌉ − 1)|.

We evaluate

|Valk(
n
k
)| ≤ ⌈

n
k

k
⌉|Superpolek|+ k|Valk(⌈

n
k

k
⌉ − 1)|
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= ⌈
n
k2
⌉|Superpolek|+ k|Valk(⌈

n
k2
⌉ − 1)|.

If we round up the ceiling terms, we get a simpler bound

≤ (
n
k2
+ 1)|Superpolek|+ k|Valk((

n
k2
+ 1)− 1)|.

By expanding the term repeatedly, the sum is extended, and we can bound the recursive term
of the size:

|EUG| ≤ |Val(n)| ≤ Σh−1
i=0 ((

n
k
+ ki) ∗ |Superpolek|) + kh|Valk(

n
kh
)|

where h is the depth of the recursion, i.e, the amount of Valiant recursions we need until the
sub-EUG to be built only needs to accommodate ≤ k poles, h=min{i ∈N |n≤ ki+1}.

Since as argued previously the last step has |Valk(
n
kh )| ≤ |Superpolek|, and thus

|Val(n)| ≤ Σh−1
i=0 ((

n
k
+ ki) ∗ |Superpolek|) + kh|Superpolek|

= (Σh−1
i=0 (

n
k
+ ki) + kh)|Superpolek|

= (Σh−1
i=0 (

n
k
) +Σh−1

i=0 ki + kh)|Superpolek|

= ((
h ∗ n

k
) +Σh

i=0ki)|Superpolek|

= (
hn
k
+

kh+1 − 1
k− 1

)|Superpolek|

By definition we have h= ⌈logk(n)− 1⌉ and thus finally

Valk(n)≤ ⌈logk(n)− 1⌉
n
k
|Superpolek|+

k⌈logk(n)−1⌉+1 − 1
k− 1

|Superpolek|

≤ logk(n)
n
k
|Superpolek|+

klogk(n)−1+1 − 1
k− 1

|Superpolek|

= logk(n)
n
k
|Superpolek|+

kn− 1
k− 1

|Superpolek|

=
log2(n)
log2(k)

n
k
|Superpolek|+

nk− 1
k− 1

|Superpolek|

The linear term is then given by:

nk− 1
k− 1

|Superpolek| ∈O(n).
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3.2 Liu et al’s (2-Way) Construction [LYZ+21]

Liu et al’s [LYZ+21] EUG construction yields an asymptotic improvement of 3n log n compared
to the previous 4.5n log n by [ZYZL19].

The construction starts by constructing a so called Weak Liu+ EUG. This first weak EUG is still
an EUG because it can edge embed every graph, but it is not yet better in size (in fact it is
actually worse), as well as not acylic, making it unusable for MPC. The EUG is then however
improved by a procedure called Shortening.

In/Out1 In/Out2

Pi+1

Pi

Figure 3.3: Example of a 2-way Liu Superpole

Shortening removes the cycles of the graph by removing the back-looping recursion nodes as
well as providing alternative paths from the poles to the sub-EUGs, thus practically removing
the recursion nodes on every recursion step .The first change of the construction lies in the
change of the Superpoles. A Liu+ k Superpole is given by merging the in/out recursion points
of Valiant EUGs that are supposed for the same sub-EUG. For example the 2-Way Liu et al’s
EUG obtained from the 2-Way Valiant EUG may look like Fig. 3.3.

The resulting Superpoles are once again instantiated in multiples, i.e, ⌈ n
k ⌉ Liu+ Superpoles

are created for a graph with n poles to be embedded. This time however, the Superpoles
are not connected to the input/output recursion points of their neighboring Superpoles but
are simply arranged in an array. This will now cause us to need more Superpoles in the
sub-EUGs, more specifically exactly one more per sub-EUG (for every k sequent Superpoles
we add one Superpole to the sub-EUG). This is the main cause of the increased complexity
in the weak construction as the first input and last output recursion points which are now
also output/input recursion points, are not left out of the recursion. An example of the new
recursive structure can be seen in Fig. 3.4.
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I/O1 I/O2

P4

P3

I/O1 I/O2

P2

P1

I/O1 I/O2 I/O1 I/O2

Figure 3.4: Example of a full Weak Liu+ EUG with 4 poles

Formally the construction algorithm for Weak Liu+ EUGs is given by Algorithm 3.4.

The given Weak Liu+ Graph is also an EUG (except for the fact that it has cycles, which we
choose to ignore for now) for the same reason as the Valiant EUG (the proof is almost exactly
the same, with slight differences in the way we choose the recursion points for embeddings),
because both use the principal of interfacing recursion points. Superpoles internally can
represent any Γ1 Graph with the amount of poles inside the Superpole while still allowing
arbitrary interfacing with recursion points. The recursion points still act as ports to sub-EUGs
for the poles in the EUG to solve the recursive embedding algorithm. The difference, that
the recursion points produce acyclic elements makes no difference, as the same quantity
of interfacing in/outgoing edges is provided per sub-EUGs, while not having cycles in the
embeddings (since any embedding with a cycle must head to a pole that is earlier in the
topology).

The overall size of the EUG is again bounded by O(n log n) asymptotic complexity again. We
prove this once again by the same method as [Wig21].
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Algorithm 3.4 CreateWeakLiuEUG(P, k)
Input: P pole nodes

k way-ness of EUG
Output: Γ1(n) EUG G = (V, E, P, G∗, {G i|1≤ i ≤ k})

1: V ← ∅
2: E← ∅
3: G∗← ∅
4: Os0

← k dummy nodes
5: for i = 1to⌈ n

k ⌉ do

6: Psi
← {pk(i−1)+1,....,pki

}
7: si = (V si

, Esi
, Psi

, Psi
, I si

, Osi
)← InstantiateSuperpole(Psi

, k)
8: G∗← G∗ ∪ {si}
9: V ← V ∪ V i , E← E ∪ E i

10: end for
11: for i← 1 to k do
12: if n≤ k then
13: G i ← (∅, ..,∅)
14: else
15: P i ← {Os1

[i], ..., Os⌈
n
k ⌉[i]}

16: G i(V i , E i , ...)← CreateWeakLiuEUG(P i , k)
17: V ← V ∪ V i , E← E ∪ E i

18: end if
19: end for
20: return G = (V, E, P, G∗, G1, ..., Gk)

Theorem 3.2.1. The size of a Weak Liu+ EUG as given by Algorithm 3.4, is bounded by:

|Superpolek|
k log2(k)

n log2(n) +O(n)

Proof. First, we extract from the algorithm that the recursive relation in the size is bounded
by:

|WeakLiuk(n, i)| ≤ ⌈
n

ki+1
⌉|Superpolek|+ k|WeakLiuk(⌈

n
k
⌉, i + 1)|

where i is the current height index of the recursion (we start with i = 0 and end with the
total depth of the recursion tree i = h= ⌈logk(n)− 1⌉).

For n ≤ k, we have WeakLiuk(n, i) ≤ |Superpolek|. Note that we can bound the amount of
Superpoles on the i-th recursion step by ⌈ n

ki+1 ⌉ because the original n pole nodes are partitioned
k way into Superpoles (leading to the one extra partition) and on every subsequent recursion
step (where the amount of poles of one sub-EUG is equal to the amount of Superpoles in the
previous recursion layer) it is once again partitioned k way.
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Note also that this implies that the end of the recursion is at i = h as the amount of Superpoles
needed is

⌈
n

kh+1
⌉ ≤ ⌈

n
k⌈logk(n)−1⌉+1

⌉

≤ ⌈
n

k⌈logk(n)⌉−1+1
⌉

= ⌈
n

k⌈logk(n)⌉
⌉

≤ ⌈
n
n
⌉ ≤ 1

which implies that the amount of poles on that recursion step are the first to be smaller than
k (as the amount of poles per recursion step is a monotonically decreasing function). If we
now expand the sum we get

|WeakLiuk(G)| ≤ |WeakLiuk(n, 0)| ≤ Σh−1
i=0 ki⌈

n
ki+i
⌉|Superpolek|+ kh|Superpolek|

≤ Σh−1
i=0 ki(

n
ki+1

+ 1)|Superpolek|+ kh|Superpolek|

≤ Σh−1
i=0 (

n
k
+ ki)|Superpolek|+ kh|Superpolek|

= Σh−1
i=0

n
k
|Superpolek|+Σ

h−1
i=0 ki|Superpolek|+ kh|Superpolek|

= (
kh+1 − 1

k− 1
+

hn
k
)|Superpolek|.

Emplacing the definition of h finally yields

|WeakLiuk(G)| ≤WeakLiuk(n, 0)≤ (
k⌈logk(n)−1⌉+1 − 1

k− 1
+
⌈logk(n)− 1⌉n

k
)|Superpolek|

≤
log2(n)
log2 k

n
k
|Superpolek|+

k⌈logk(n)−1⌉+1 − 1
k− 1

|Superpolek|

≤
log2(n)
log2 k

n
k
|Superpolek|+

k⌈logk(n)⌉−1+1 − 1
k− 1

|Superpolek|

≤
log2(n)
log2 k

n
k
|Superpolek|+

klogk(n)+1 − 1
k− 1

|Superpolek|

≤
log2(n)
log2 k

n
k
|Superpolek|+

kn− 1
k− 1

|Superpolek|.

The second term of the sum once again yields the linear remainder term to the complexity.
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Note that this Weak Liu construction so far has a significantly worse performance than the
regular Valiant construction, but opens up the new road of circuit shorting for optimization.
We now introduce the shorting procedure (cf. Algorithm 3.5), which turns the EUG into a
DAG and decreases the size significantly.

Algorithm 3.5 ShortWeakLiu(G)
Input: Γ1(n) weak Liu EUG G = (V, E, P, G∗, {G i|1≤ i ≤ k})

Output: Γ1(n) Liu EUG G = (V, E, P, G∗, {G i|1≤ i ≤ k})
1: if V = ∅ then
2: return (∅,∅, ...)
3: end if
4: for (u, v) ∈ E do
5: if u ∈ s and v is recursion point for some Superpole s ∈ G∗ then
6: G x ← EUG of the pole v
7: E← E − {(u, v)}
8: W ← Γ−Gx (v)
9: E← E − {(v, w)|w ∈W}

10: E← E ∪ {(u, w)|w ∈W}
11: else if u is recursion point for some Superpole s∗ and v ∈ s then
12: G x ← EUG of the pole u
13: E← E − {(u, v)}
14: W ← Γ+Gx (v)
15: E← E − {(w, u)|w ∈W}
16: E← E ∪ {(w, v)|w ∈W}
17: end if
18: Remove recursion points from G
19: for i = 1 to k do
20: G i ← Shor tWeakLiu(G i)
21: end for
22: end for
23: return G

Essentially, Algorithm 3.5 eliminates the recursion points on all sub-EUGs recursively and
reroutes the edges which would interface through them. Any Edge heading into the recursion
point of a Superpole, which was always from a sub-EUG by the design of the Superpoles,
would now instead head to the successor of that recursion point in the same Superpole. Any
edge starting in one of the recursion points and going into one of the nodes of the Superpole,
in which the recursion point was a pole node, would instead start from the predecessor of
the recursion point inside of its Superpole. Edges, of the Superpoles, which did not cross the
border from Superpole to sub-EUG would simply be removed.

We now want to argue why this shorting process yields a significantly smaller, acylcic EUG.

Theorem 3.2.2. Applying Algorithm 3.5 to a Weak Liu EUG results in an acylic EUG.
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Proof. If we start from the edge embeddings of two graphs G, G′ ∈ Γ1(n) into the original
Weak Liu EUG, we now want to argue, that we can modify their embedding to fit into the
new shorted graph. The mapping of the poles remains simply the same, as all the poles on
the middle lane of the Weak Liu EUG still exist. We now only need to show, that the edge
embedding can be rerouted/ shorted, to accommodate the fact, that we now no longer have
recursion points. If the embedded edge stays inside of the same Superpole, this does not
require any change, as the paths inside of the middle lane Superpoles are unaffected. If we
consider now a path to a different Superpole, it would have headed through at least two
recursion points, one as an ingoing interface into a sub-EUG and one as an outgoing choice.
For the recursion point serving as an input, we know that the edge of the path going into
the recursion point must have been rerouted to the same node as the one which is the next
node in the path after the recursion point, because the edge embedding from the recursion
point can only head to a subsequent recursion point in the sub-EUG by that edge (otherwise
it would have headed back into the Superpole to another pole through the edge that was
removed). Thus we can replace the two edges from the original embedding, the ingoing
into the recursion point and a = (u, r) the outgoing b = (r, v), by the singular edge that
was added in the Shortening directly (u, v). An analogous replacement can be chosen for
the output recursion point. Because every two removed edges have exactly one unique new
edge and this segment of each disjoint embedding is thus replaced with a unique new edge
per path, the new embedding must also be edge disjoint. Since any two graphs G, G′ to be
embedded could have been chosen, the embedding stays universal.

The EUG is a DAG as all the edges which produced loops (which headed through the recur-
sion points) have been removed and instead been replaced by edges that are lower in the
topological order.

Now the complexity of the EUG size has also slightly decreased, which yields the main
improvement of Liu’s construction.

Theorem 3.2.3. Applying the Shortening Algorithm 3.5 to a EUG produced by Algorithm 3.4,
the resulting EUG has a total size bound by:

|ShortWeakLiu(WeakLiu(G))| ≤
|Superpolek| − k

k log2(k)
n log2(n) +O(n)

Proof. The construction is given by removing every recursion point in every Superpole of
every sub-EUG (inclusive the original total EUG).

Note that the amount of Superpoles can be found by taking the complexity of the Weak Liu
construction and divide it by the size of the Superpoles.

|WeakLiu(G)|
|Superpolek|

≥
n log2(n)
k log2(k)

+O(n).
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Since we now remove k Superpoles per each Superpole, we get as a final complexity

|ShortWeakLiu(WeakLiu(G))| ≤ |WeakLiu(G)| − k
|WeakLiu(G)|
|Superpolek|

≤
|Superpolek| − k

k log2(k)
n log2(n) +O(n).

As [LYZ+21] points out, and can be seen by some consideration of the size of Superpoles,
choosing k = 2 yields the optimal size construction for this framework with the more precise
size complexity of ≈ 3n log2(n) +O(n), which is as of time of this writing, the best known
practical implementation of EUGs.

3.3 Miscellaneous Constructions

There exist several other constructions for UCs besides the original framework for construction,
that was proposed in [Val76]. [ZYZL19] optimized the construction for a 4-way in Valiant’s
classical construction, by optimizing the Superpoles with 4 poles. [AGKS20] introduced a
hybrid construction of 2- and 4-way Valiant Recursion, improving the complexity bound from
4.75n log n to 4.5n log n. This is achieved by adaptively choosing the way-ness parameter in
the recursion steps depending on what best reduces size.

[SS09] provides an overview over several constructions which are useful in a setting of
multi-input gate circuits, especially for smaller scale inputs circuits, by combining special
functional blocks of permutation and computation iteratively, instead of recursively embedding
the topology of the circuit in sub graphs. Their first iterative construction has complexity
O(n2 log d). Their second construction uses three types of modules (input selection, output
selection and a generalized universal blocks) and achieves complexity O(dn log2 n). The third
construction uses the recursive nature of [Val76] and modifies a circuit to have a fanin and
fanout of at most d with some overhead. The first two constructions are more beneficial for
smaller circuits to be embedded, while the third construction may be used for larger circuits,
and is related to our work in the sense that in it a circuits fanout is reduced before passing it
to a d-way generalization of a classical construction like Valiant’s.

It should be noted, that one of the main targets of all of these constructions is to decrease the
amount of AND gates inside of the circuit (which mostly overlaps with the goal of minimizing
overall size) in order to decrease the amount and duration of communication necessitated
for MPC evaluation (only AND gates need to create fully randomized garbled tables per gate,
which need to be transmitted as data in the protocol, XOR gates are cheaper to be evaluated,
as the XOR gate is evaluated via XOR operations on the protocol level without extra space/
communication requirements).
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3.4 Translating an EUG into a Universal Circuit

Before we can finally build Universal Circuits from EUGs, we define what precisely a Universal
Circuit should be.

Definition 3.4.1. Let u+g+v=n, B be the set of all Combinatorial Boolean Functions, B(u, g, v)
be the restriction of B to circuits with u inputs, g gates and v outputs, and h ∈ N → N an
arbitrary function that maps the size of the circuit to the size of the programming p f .
Then we define a Universal Circuit (UC) as a Combinatorial Boolean Circuit
UC : {0, 1}u × {0, 1}h(g)→ {0, 1}v , constructed by some deterministic algorithm
CreateUC : B(u, g, v)→ B× {0, 1}h(n), that fulfills the following properties:

1. (Correctness) ∀ f ∈ B(u, g, v) : ∀x ∈ {0,1}u : ∃p f ∈ {0,1}h(n) : (UC , p f )=CreateUC( f )
∧ UC(x , p f )= f (x)

2. (Function Hiding)∀ f , g ∈ B(u, g, v) : (UC f , p f )=CreateUC( f )∧(UCg , pg)=CreateUC(g)
∧ UC f =UCg

It should be noted that this definition is only exact for true PFE as it denotes the exact hiding
property up to the size information, whereas for SPFE, we would slightly modify it to lessen
the function hiding property to e.g. a statistical or computational hiding property, or by
adjusting the relevant function spaces, such that only functions with more similar attributes
have the same UC. E.g. [BHR12] defines function hiding in terms of obliviousness of garbling
schemes, by defining a game in which any polynomial probabilistic Turing machine Adversary
can only learn some meta-information ( f ) of the function with negligible probability. They
further define size( f ) = {u, g, v} as the meta-information function, if Universal Circuits are
used. Instead choosing ( f ) = {u, g, v,∆(Graph(f))} might lead to a useful definition for multi
input-multi output Universal Circuits in our fixed construction.

As outlined in [AGKS20], we must now perform some slight modifications to the EUG to
allow for the computation in a Boolean setting. We will explain the process for the classical
2-way setting of [LYZ+21] and [Val76], where there only exists gates with 2 inputs and one
output (which may be used twice). The adaption towards a setting with more inputs (and
outputs) will be explained in § 4.

Assume first we are given a circuit C built only from binary gates with a total of n gates.
Note that C has a natural graph representation Graph(C) = G = (V, E) that preserves the
topology of the circuit, the wiring by edges in E, and gates by nodes in V . We now perform
the construction and embedding as laid out for either Valiant[Val76] or Liu et al. [LYZ+21]
with the given graph G and are given an acyclic 2 EUG (i.e, one that embeds Γ2(n)) and an
embedding mapping ϕ which embeds the graph into that EUG.

The transformation into a UC introduces three new types of special-purpose Boolean gates.

X and Y Gates are specific utility gates which serve to hide the paths of the edge embedding.
They essentially behave like rail yard switches by choosing which of the inputs is given to
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Figure 3.6: Universal Gate

which output. A Y Gate essentially then is a multiplexer that only chooses one of the two
inputs and a X Gate switches the two inputs or forwards them unaltered. These two gates
with the two possible configurations capture all possible options of embedding that can occur;
We enforced in our constructions, that every node, not just poles, has in/outdegree 2 (as
can be seen in the recursive wiring to the sub-EUGs as well as in the Superpoles) and the
embeddings were edge disjoint over all paths.

Universal Gates are the representations of our original gates, which are programmed by
their truth table as programming bits. Universal Gates have, as enforced on C , only 2 inputs
and by our design now a single output and can compute any single Boolean gate. The
correct topological order of the Universal Gates as well as their connection is enforced by the
embedding.

We may thus define the gates by the following Boolean formulae:

X-Gate: (o1, o2) = ((¬p ∧ a)∨ (p ∧ b), (¬p ∧ b)∨ (p ∧ a))

Y-Gate: o = (¬p ∧ a)∨ (p ∧ b)

Universal Gate: o =Mux(Mux(p0, p1, b), Mux(p2, p3, b), a) s.t. Mux(x0, x1, b) = xb

We now translate the EUG into a UC as follows.

1. Every pole on the middle lane that represents a gate in the embedding, is replaced with
a Universal Gate (cf. Fig. 3.6), and its programming is derived by taking the truth table
from the Gate that is mapped to that pole.
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2. Every node or pole in one of the sub-EUGs with 2 inputs and 1 outputs is replaced by a
Y-Gate (cf. Fig. 3.5). Its programming bit is derived by how paths are wired through
the node in the original EUG by the edge embedding.

3. Every node or pole in one of the sub-EUGs with 2 inputs and 2 outputs is replaced by a
X-Gate (cf. Fig. 3.5). Its programming bit is derived by how paths are wired through
the node in the original EUG by the edge embedding.

4. Every pole on the middle lane that represents an input or output in the embedding is
transformed into that input/output wire.

Note that all of the information that forces the new UC to behave as our original circuit is
captured into programming of the X and Y gates as well as truth tables. Also note that any
two different circuits with the same amount of total gates as well as the same number of
inputs and outputs get translated into the same UC but with different programming bits.
Thus, in the default construction with the same amount of inputs and outputs per pole, the
UC only leaks the size of the embedded circuit as well as the amount of inputs, outputs and
gates. By now treating that programming information (i.e., the collection of programming
bits in the correct order) as a secret in multiparty computation, having them be a secret input
of the function holder in the multi party computation, we enforce the privacy of the function
in the computation. As the regular input size must be known by the input provider in the
computation (and possible output size by the design choice of what output information is
given to which party) in order to correctly compute, that information is also leaked. The
actual input values stay private however, as they are obfuscated by the computation (the input
provider knows which nodes in the universal circuit represent the input to the computation
and can give them as secret inputs in the MPC). Thus this construction of a universal circuit
from an EUG, together with a secure MPC protocol gives a correct and private procedure for
private function evaluation.
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We now describe our novel approach to allow for the multi input/output gates. There are two
main ideas. Either we create more copies of the EUG to accommodate a higher fanin/fanout
in the graph to be embedded, or we reduce the graph to be embedded to a lower fanin/fanout
representation and post-process the graph via an auxiliary graph construction. Most previous
graph embeddings where done by reducing the fanin/fanout via copy gates/truth table
partition into a graph with fanin/fanout 2 and then embedding it into 2 EUGs. This however
is not optimal towards a lower size, as we can instantiate larger Universal Gates (ULUTs)
cheaper. It should be noted, that our construction requires either Valiant’s [Val76] or Liu et
al’s[LYZ+21] EUG constructions as presented in § 3, in order to construct its EUGs.

4.1 Representation of larger Look Up Tables

In order to really benefit from larger LUTs we must first pin down how we construct them
from simple components. This is necessary, as not all MPC protocols support special features
for LUTs and must have some lowering of LUTs into Boolean primitives.

Definition 4.1.1. A n → m ULUT is a lookup table with 2n rows and m output columns,
such that each output column has in any row a variable ci , 0 ≤ i ≤ 2n ∗m, which we call the
programming bit of the ULUT for some specific inputs x = (x0, ..., xn) on the specific output slot.

ULUTs will be used in place of Universal Gates (cf. Fig. 3.6), to embed LUTs directly into the
poles of the UC. Because we no longer need to support the embedding of edges between more
primitive gates and instead collect them into the ULUT (which represents the many primitive
gates), we cut down on the size of the UC while only sparingly increasing the size of each
Universal Gate representation (we limit the size of each ULUT by the same hyper-parameter
k, thus limiting the size of it).

4.1.1 ULUT by Chaining of Multiplexers

First we want to solve the case for fanin k and fanout 1. The simplest construction for this, is
chaining together multiple Multiplexers.
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o0 o1 o2
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Figure 4.1: Example of a 2→ 3 ULUT

A 1→ 1 ULUT can be given by a single multiplexer.

ULUT(x , (c0, c1)) = Mux(c0, c1, x)

Where Mux is a Boolean multiplexer with behavior Mux(c0, c1, x) = cx , and c0, c1, x are the
programming bits and the input of the ULUT respectively. Now inductively assume we can
construct an n→ 1 ULUT with (c0, ..., c2n−1) programming bits, then a n+ 1→ 1 ULUT can
be given by

ULUT((x0, ..., xn+1), (c0, ..., c2n+1−1)) =
Mux(ULUT((x0, ..., xn), (c0, ..., c2n−1)), ULUT((x0, ..., xn), (c2n , ..., c2n+1−1)), xn+1)

This technique of chaining Multiplexers is also known as Shannon Expansion [Sha49]. It is
trivial to see that this recursive construction can represent all functions with the given size,
simply because it is a larger lookup table.

Note that this construction size and the amount of programming bits scale exponentially with
the number of inputs.

4.1.2 n→ m ULUT

If we need to represent a ULUT with multiple different outputs, we simply create m copies of
our n→ 1 ULUT construction and adjust the programming bits of each with the given column
of the ULUT. This adjustment for multiple different outputs only scales linearly in size with
the amount of outputs required. An example of such a ULUT can be seen in Fig. 4.1.

Now we have outlined how U LU Ts could practically be instantiated in an MPC setting, as
output of the compiler however we only output the abstract description of each ULUT, i.e.,
input and output size as well as the programming bits for each of the output slots in order.
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4.2 Multi Input/Output ABY-UC Format

We now provide a description format for ULUT based Universal Circuits in a similar syntax to
the classical ABY-UC [DSZ15] format. The circuit is described by two files, the circuit and the
programming. The circuit file has, topologically sorted, one gate of the UC per line, where the
first token describes the gate type (X, Y, and U for ULUT) and the subsequent lines describe
in/outgoing wires. Every wire is mapped to a natural number and may only be defined once
and used an arbitrary amount.

X and Y gates are encoded by the following scheme:

Y 1 2 3

X 1 2 3 4

The first two numbers are the wire numbers of the inputs, the following numbers are the
outputs. If the programming bit is set to 1, the first input is directed to the first output (and
the second input on the second output), else the second input is directed to the first output
(and the second input to the first output).

ULUTs (Universal Look Up Tables) are encoded as follows

U 1 2 3 | 4 5

the wire numbers ahead of the separator | are the inputs, and those after are the outputs.
This separator is necessary, as otherwise, the amount of outputs would be ambiguous. For
example in Fig. 4.2 without the separator, we could either have a 4→ 1, 3→ 2 or 2→ 3
ULUT. The programming bits are also separated in order to associate them by order to the
output wires. The programming bits are to be understood as look up tables, one per output
of the ULUT. Given the input wires by order, the binary sum of the input values determines
the output to be given.

All the programming bits are stored in the separate programming file, where each line contains
the programming bits associated to the gate in the same line of the circuit file.

If we evaluate as an example the given circuit file in Fig. 4.2, if the wire 3 holds value 0, 4
holds 1 and 5 holds 1, then the third value (counting from 0) is the correct output, thus 6
would hold 0 and 7 would give out 1.
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−−CIRCUIT−−
C 0 1 2
X 1 0 3 4
Y 3 4 5
U 3 4 5 | 6 7
O 6 7
−−PROGRAMMING−−
0
1
1 1 1 0 0 0 0 1 | 0 1 0 1 1 1 0 0

Figure 4.2: Example of an ABY circuit file

4.3 Fixed ρ fanin/fanout Approach

This approach is a slight modification of fixed approach presented by [Wig21] and builds
upon the ideas of [Wig21; SS09]. For this approach we recall that each EUG of Valiant or
Liu can accommodate an arbitrary graph G ∈ Γ1(n) (cf. Theorem 3.1.1) with fanin/fanout 1
and n nodes that an arbitrary amount of graphs ρ can be merged to allow for any graph of
some fixed maximum fanin/fanout ρ can be handled (cf. Theorem 2.0.3). Thus, if we now
have, due to larger ULUTs, a graph with higher fanin/fanout, instead of decreasing it using
copy gates, we now simply create more copies of the EUG. We now may edge-color the larger
fanin/fanout graph with more than two (namely maximum fanin/fanout) colors and embed
them into the larger amount of EUGs we created.

This approach also needs one minor adjustment aside from the multiple copies. Since each
node (LUT) may now have two semantically differing outputs (because there may be multiple
outputs in the LUT with distinct targets), we need some way of distinguishing the value, an
outgoing edge receives in the UC representation of the graph.

This is done by assigning each edge in the original graph representation of the circuit so-called
slot numbers. One slot number is given to determine the output of the node we are exiting
from and another is given to determine the input which this slot feeds into. That extra
information on our graph is necessary, as multiple wires (edges) outgoing from one node
may share the same slot (an output value might be used in multiple places) and we could
not infer this double use just by the order of the edges. This allows us to no longer have to
micromanage the order of input/output edges of the graphs in the transformation from EUGs
to UC, as we can simply refer to the slot numbers of the edges instead. Note that this slot
information is only needed for the creation of the UC from EUG and is not used inside of
the EUG construction or the edge embedding. It is only visible in the final UC from the wire
numbers associated with each input and output wire. The slot assignment of a circuit to be
embedded might look as in Fig. 4.3.
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Figure 4.3: Example of DAG to be embedded with the assigned from and to slot numbers on
each edge.

To translate the k-EUG with its edge embeddings into the UC, we consider each edge tuple
(u, from− slot, to− slot, v) from our annotated graph. For each of those tuples we use up one
of the paths from u to v in the EUG and annotate the slot information on the first and final
edge of the path inside of the EUG respectively. The slot information on the edges of the EUG
are then used to determine the precise wire number of each input and output. The ULUTs
are programmed according to their relative LUTs. X and Y gates are derived the same way as
in the classical constructions (cf. § 3.4). Note that we use slot information for the X and Y
Gates as well to simplify the translation (here the numbers are always the same and either 0
or 1). The pipeline for generating a fixed-k multi input/multi output UC may now look as in
Algorithm 4.1

4.4 Dynamic/In-Place fanin/fanout Approach

This approach is a slight modification of the dynamic construction approach presented by
[Wig21] in order to accommodate ULUTs with multiple different numbers of outputs. This
adaption again adds the ability to give each LUT in the UC an individual number of outputs
wires, but comes at the cost of only having SPFE, as the individual sizes of the LUTs give more
information to an adversary, who wants to determine the function that is being embedded.
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Algorithm 4.1 CreateFixedUC(C , k)
Input: Circuit C ▷ Circuit to be embedded

k ≥max{v ∈ Graph(C)|∆(v)} ▷ Number of mergings
Output: Universal Circuit with programming

(G′i)i∈[k] = k− edge− color(G)
(Gi)i∈[k] = (∅,∅)k

(ϕi)i∈[k] = (∅)k

for i ≤ k do
Gi ← CreateWeakLiu/ValiantEUG(Gi) ▷ (cf. Algorithm 3.4, Algorithm 3.1)
ϕi ← EdgeEmbedding(Gi , G′i) ▷ (cf. Algorithm 3.2)
if algorithm= Liu then

Gi = ShortWeakLiu(Gi) ▷ Adapt Embedding ϕ according to edge replacements
end if

end for
G∗←Merge((Gi)i∈[k]) ▷ Merge all EUGs as described in Theorem 2.0.3
ϕ∗←Merge((ϕi)i∈[k]) ▷ Merge the mappings into one map
UC← convert G∗ to circuit with X,Y and ULUT
Prog← Derive Programming bits from ϕ∗ for each gate in UC
return (UC, Prog)

In order to accomplish this, we first fix some parameter 2 ≤ k′ ≤ d which determines the
amount of EUG copies we want to utilize in our construction. Following this, we generate an
auxiliary graph as in Algorithm 4.2.

The fixed construction is then invoked with the auxiliary graph of our circuit. Finally the
resulting UC is modified to rewire the edges from and to auxiliary poles towards the poles, to
which the inputs and outputs were originally meant to go to in the circuit. Using Algorithm 4.2,
the dynamic construction is given by Algorithm 4.3.

Note, that the edges of the auxiliary graph retain the slot information of the original graph,
which is a necessary input to the EUG construction in the third step as part of the edge
information, which is also copied in the rewiring process before converting into a circuit, to
retain correctness.

We now denote similar to [Wig21] the notion of a leaky EUG to argue the correctness of the
construction.

Definition 4.4.1. For P+, P− ∈ N n the class ΓP+,P−(n) denotes the set of all DAGs with n nodes
vi with indegree P+i and outdegree P−i specifically. A leaky EUG for the specific vector G′ is a
DAG which can edge embed any G′ ∈ ΓP+,P−(n).

Considering, that if all fanins are the same as well as all fanouts, we have the fixed construction
again, but with fewer EUG mergings. Since we cannot infer fanout information about the
embedded graph from the leaky EUG anymore, we have a regular EUG again.
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Algorithm 4.2 CreateAuxiliary(G, k)
Input: Topologically sorted DAG G = (V, E)

Degree k
Output: Auxiliary graph G∗

G′ = (V ′, E′) = (∅,∅)
for Node v ∈ V do

INv = {ini|1≤ i ≤ ⌈δ
+(v)
k ⌉ − 1} ∪ {v′}

OUTv = {outi|1≤ i ≤ ⌈δ
−(v)
k ⌉ − 1} ∪ {v′}

V ′ = V ′ ∪ INv ∪OUTv
end for
for Edge e = (u, v) ∈ E do

u′ = Pop(OUTu)
v′ = Pop(INv)
E′ = E′ ∪ (u′, v′) ▷ Also copy slot numbers from e onto e′

if δ−(u′)≤ k then
Push(u′, OUTv)

end if
if δ+(v′)≤ k then

Push(v′, INv)
end if

end for
G∗ = TopoSort(G′) ▷ Move all INv before v and OUTv after v in the topological order
return G∗

Lemma 4.4.1. If P+ = P− = 1 ∗ρ then ΓP+,P−(n) = Γρ(n) and a leaky EUG for that class also
is a regular EUG.

It should be noted, that this construction case is not really useful, as the amount of needed
auxiliary poles, and thus larger EUG size generally performs worse than the regular fixed
construction with more mergings.

We now prove informally

Theorem 4.4.2. The Graph of the UC produced in Algorithm 4.3 is a leaky EUG for ΓP+,P−(n)
with size bounded by:

3(n+∆) log2(n+∆) +O(n+∆)

such that ∆= Σn
i=0max(⌈ P+i −k

k ⌉, 0) +max(⌈ P−i −k
k ⌉, 0)

Note, that the fundamental complexity of the underlying construction is not changed, as the
construction of the EUG itself is not changed, but instead is re-parametrized.
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Algorithm 4.3 CreateInPlaceUC(C , k)
Input: Circuit C ▷ Circuit to be embedded

k ≤max{∆(v)|v ∈ Graph(C)} ▷ Number of mergings. Graph(C) is
the graph representation of the Circuit

Output: Universal Circuit & programming

C ′← CreateAuxiliary(Graph(C), k)
(UC, Prog)← CreateFixedUC(C ′, k)
for p = Pole(OU Tu) ∈ UC do

for e ∈ outgoingEdges(p) do
Find v s.t. e == (p, Pole(v))
copy outgoing slot information from(OUTv , v) onto e
Rewire e = (p, Pole(v))← e = (Pole(u), Pole(v))

end for
end for
InputEdgeForwarding(UC) ▷ cf. [Wig21]
Remove all the poles of the auxiliary nodes from the UC
return (UC, Prog)

Proof. Given a circuit C with graph representation G = (V, E) with |V | = n the auxiliary graph
construction as above is of the size n+∆ due to the auxiliary nodes. The topological sorting
and reordering enforces, that all auxiliary nodes that enter inputs into a node v are ahead of
it, outputs after it respectively. The reconnection of edges to the main poles allows for the
higher input / output embedding, because every edge embedded to head to/from an auxiliary
pole, can be immediately extended by the new extra edges from reconnecting to the main
pole. For any two graphs G, G′ ∈ ΓP+,P−(n), the Algorithm 4.2 yields a graph with the same
set of nodes (including auxiliary poles), but different edges. We now consider that the graph
of our UC, produced for both graphs from the auxiliary graph by our regular construction
and the reconnecting of extra edges, yields the exact same Universal Circuit, as we know that
the number of auxiliary nodes per pole, and thus the amount of redirected edges in both
graphs is the same. If we now are given an Edge in G that was connected to an auxiliary pole
in the edge embedding, we simply extend / rewrite the beginning and/or end part (an edge
can go from the auxiliary pole of one pole to the auxiliary pole of another) to use those extra
edges at the beginning and/or end. Note that the slot numbers, which are then copied from
the original graph G onto the first edge of each embedding, are essentially represented by the
order of inputs/ouputs, which is either virtual information of the graph, which is only visible
in the final Circuit description, or constitutes an actual ordering of the ingoing/outgoing
edges of the pole. This information however is meaningless, as the order can be arbitrarily
changed by adjusting the ordering of the truth tables and because two outgoing edges of the
same slot will be embedded as separate edges, thus making it impossible to tell which set of
edges have the same slot. We therefore cannot distinguish the UC of G from the one of G′,
as it is the same. Thus we cannot infer more information about G or G′ from the Universal
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Circuit without the programming, except for the arity information and overall size, and the
graphs are both correctly embedded.

Note, that now k′ can serve as a hyper parameter to govern how much information we want
to leak about the function within use, i.e., how leaky the EUG truly is. If we choose k′ to be
the maximum of both in and out degree over all poles, there will be no need for the creation
of auxiliary poles and no edges will be redistributed; all the poles have the same in- and
outdegree. If we choose k′ = 2 (the minimal practical choice for Boolean logic) the likelihood
for redistribution from auxiliary poles to occur drastically increases, and thus the information
leakage about the size of each LUT and possible function within the topological order of the
circuit.

To also give an example of how such an attack might work, consider the scenario where
k′ = 2 and the first two poles of an exemplary circuit to be embedded into a UC have 2 and 3
outputs respectively. If it now occurs that the next pole in the topological order has exactly 5
inputs due to our dynamic construction, we know that the first two poles must feed all their
outputs into this pole, as the only topological inputs before the third pole are these two, and
it "consumes" all the outputs of the first two poles. If the UC was created chosen the fixed
approach or k′ = 5, then the same circuit could have been embedded, but as all poles hold 5
inputs and outputs, the attacker could not be certain whether the edges in question might be
wired to some later part of the circuit all though this is more wasteful as some parts of the
circuit do not truly contribute to the result of the computation but are instead dead leads
running into nowhere by the design of the UC.
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In order to analyze the performance of the proposed methods, we compile a set of selected
circuits from cryptographic utility (block ciphers, hashes) to computational functions (addition,
multiplication) as well as randomized circuits, and analyze their size in terms of the amount
of AND gates, used X and Y gates, the distribution of Look Up Table sizes and compare the
sizes to the implementation of [Wig21]. We introduce methods to build multi input-multi
output gate circuits from multi input-single output circuits.

5.1 Construction of Multi Input-Multi Output Gate Circuits

In order to benchmark circuits with specific functionality, e.g., addition, we need to give a
mapping from LUT circuits with singular outputs to a more condensed representation with
multiple outputs. It is important, that the new representation of the circuit preserves/reduces
the fanin/fanout over all gates in the circuit, as well as significantly reduce the amount of
needed gates for the same functionality. This is both necessary to make an actual use of the
multiple outputs (less gates require smaller EUGs in the UC construction and therefore yield
smaller UCs overall) as well as to counteract the implicit negative effects of the multiple
output UC construction in the fixed setting.

Consider a circuit in which all gates except one have 2 inputs, 1 output and 2 usages of this
output. This one different gate might now have 3 inputs, 2 outputs and overall 4 usages
of those 2 outputs. Just because of this single gate, the derived UC needs 3 EUG copies
while most of the circuit only made use of 2. Furthermore every ULUT in the circuit will
now be of AND gate size (23 − 1) ∗ 2= 14, as the fixed approach enforces all ULUTS to be
of the same maximum size inside of the circuit. These compounding factors often lead to
Universal Circuits which perform worse than constructions of multiple inputs and singular
outputs [Wig21], simply by the fact that, to the authors, there is no known construction
which yields smaller multi input-multi output circuits. Note that the dynamic construction
does not suffer from these problems, as it has precisely this "shrink-wrapping" property, which
allows for individual ULUT sizes as well as only needing two EUG copies, with the extra
auxiliary gates adaptively wrapping the size of the EUGs around the interfaces of the gates
by the auxiliary poles. Two different approaches have been considered to construct multiple
input/output circuits. Note that this trade-off also precisely has the security implications that
for full function hiding (PFE) the ULUTs should all have the same sizes whereas in SPFE this
may be more leaky by having adaptive ULUT arities in the UC.
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5.1.1 Multi Input Gate Collection [DKS+17]

The approach introduced by [DKS+17] merges multiple input gates, which lie on the same
topological depth (i.e., one does not have a path to the other), if they have some overlapping
use of input wires. A parameter is given which controls how many gates are merged at most.
This approach does not allow for precise control of fanin/fanout and retains the same depth
in the circuit.

5.1.2 Adaptive Gate Merging

With this approach we propose an improvement to merging gates into smaller multi input-
multi output circuits.

Algorithm 5.1 CreateMultiInputOutputCircuit(C , maxfanin,maxfanout,maxoutputs)

Input: multi input-single output circuit C
maximum allowed fanin per gate
maximum allowed fanout per gate
maximum amount of different outputs per gate

Output: multi input-multi output circuit C ′ so that ∀x : C(x) == C ′(c)
1: C ′ = (gi = i. gate in circuit)← topo− sort(C)
2: modification← True
3: i← 0
4: for h= 0 to N do
5: modification← False
6: for j = i + 1 to |C ′| do
7: if CanMerge(gi , g j , maxfanin, maxfanout,maxoutputs) then ▷ cf. Algorithm 5.2
8: C ′← C ′ − {gi , g j} ∪ {MergedGate(gi , g j)} ▷ cf. Algorithm 5.3
9: modification← True

10: end if
11: i← (i + 1) mod |C ′|
12: if not modification and i = 0 then
13: Break
14: end if
15: end for
16: end for
17: return C ′

The Algorithm 5.1 tries iteratively to merge lookup tables whose cumulative size follows
given restrictions to inputs, outputs and fanout so long as their merging can be performed
while respecting topological order. Algorithm 5.2 checks if they can be merged, which is
either the case if they are of the same topological depth (parallel and thus not interfering
with one another) or in immediate succession (there is a result shared between the two gates
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Algorithm 5.2 CanMerge(x , y, maxfanin, maxfanout, maxoutputs)

Input: LUT Nodes x and y
maximum allowed fanin per gate
maximum allowed fanout per gate
maximum amount of different outputs per gate

Output: True ⇐⇒ x and y may be merged within the given constraints
1: a← TopoDepth(x) ▷ Compute depth of the gate in the circuit according to topological

order
2: b← TopoDepth(y)
3: in← Inputs({x , y}) ▷ Set of inputs that are not an output of x or y
4: out ← Outputs({x , y}) ▷ Set of outputs of x and y that are used in gates other than x or

y
5: usesout = NumberOfUses(out) ▷ Number of total uses of all outputs outside of x and y
6: if |in| ≥maxfanin or |out| ≥maxoutputs or usesout ≥maxfanout then
7: return False
8: end if
9: return a = b or (|a− b|= 1 and in∩ out ̸= ∅)

Algorithm 5.3 MergedGate(x , y)
Input: LUT Nodes x and y

Output: Merged node of x and y
1: in← Inputs({x , y})
2: out ← Outputs({x , y})
3: for i = 0 to 2|in| do
4: for j = 0 to |out| do
5: inputsbin← Bin(i)
6: oi, j ← j.output of evaluation of subcircuit C∗ = {x , y} on inputsbin
7: end for
8: end for
9: resultingnode← newNode

10: resultingnode.inputs← in
11: resultingnode.outputs← out
12: resultingnode.programming← {oi, j|i ≤ 2|in|, j ≤ |out|} ▷ these values determine the new

LUT programming
13: return resultingnode

and no node that lies on a path between them). Note that the topological ordering is built up
and preserved in order to allow for significantly faster computation of topological depth. If
two gates may be merged, they are removed from the circuit, and replaced by a new larger
gate, that encompasses the functionality of both old gates. Algorithm 5.3 creates the new
larger LUT gate, by determining the border of wires which are used by the two merged nodes
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and are output, as well as determining the larger set of programming bits. Note that this
merging may also reduce fanout of some of the outputs, as they may have had one of their
uses in one of the two removed nodes.

5.1.3 Generating Random Circuits

It is also relevant to consider creating randomized circuits to get an overview of the amortized
performance of the UC construction. This is done in a similar manner to [Wig21] while also
introducing multiple outputs through a minor modification (outgoing edges randomly choose
from a random set of outputs which have random programming bits each). We can procede
along the following lines.

1. Given amount of total nodes at most N and fanin/fanout parameters ρ+,ρ− create a
matrix of size N × N .

2. Fill the matrix to be a random adjacency matrix by coin flipping every field in the upper
right triangular without the diagonal (this ensures the resulting graph to be a DAG).

3. Adjust the matrix such that each column has at most ρ− one’s and each row at most ρ+
one’s.

4. Convert the given adjacency matrix into a graph.

5. Pick the largest connected sub graph of this graph and discard remaining disjoint
segments.

6. Every node without ingoing edges is treated as an input to the circuit, every node
without outgoing edges as an output.

7. Assign every node with ingoing and outgoing edges random programming bits (assign
which outgoing edge receives which output at random) such that the total amount of
outputs is random and the amount of inputs is exactly the amount of ingoing wires.

8. Write the resulting circuit to an arbitrary format (e.g. SHDL, Bristol etc).

5.2 Analysis of Circuit Sizes

We consider the circuits listed in Tab. 5.1, which where previously benchmarked by [Wig21]
to evaluate the size performance of multi input-single output Universal Circuits as compared
to the classic constructions of Universal Circuits. The circuits used by [Wig21] where sourced
from [TS] 1 for cryptographic examples as well as [DKS+17] for computational examples. All
the circuits of [TS] are formatted in the Bristol format and all circuits of [DKS+17] are given
in the VHDL-Verilog language. The Verilog language is a platform agnostic programming

1https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
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language for describing digital hardware, which allows, by a plethora of synthesis and
verification tools, a very intuitive and efficient description of arbitrary Boolean functions
within submodules. This notion of submodules may be of great benefit, as this is precisely the
beneficial encapsulation mechanism we want to exploit with multi input-multi output LUTs.
If a synthesis tool would exist, that would directly map all the submodules of a given module
into LUTs, this would yield a simple and very effective tool for creating multi input-multi
output gate circuits for our compiler. An example of this can be seen in the synthesis of our
Ripple Carry Adder Circuit, in which each Full Adder may be given as a submodule, such
that all the submodules need only be connected by wiring. Unfortunately, such a tool is not
known to us at the time of this writing. As described in § 5.1.3, the random/procedural
circuits can be given in any format. We choose to create them in a supplementary tool and
describe them in the SHDL format, allthough they may also be translated into the BENCH
circuit benchmarking format [benchform; Qin06] or similar. We will directly compare the
sizes of our circuits to those of the previous compiler to gauge the improvement provided by
the addition of multiple outputs.

Circuit Source # Boolean Gates

AES-expanded [TS] 27 692
MD5 [TS] 77 861
SHA-256 [TS] 236 111
SHA-1 [TS] 106 601
Ripple Carry Adder 128× 128→ 64 [DKS+17] 1 522
Karatsuba Multiplier 32× 32→ 64 This work 10 447

Table 5.1: Circuits compiled in the multi in-out setting

All of the external example circuits are described as regular Boolean circuits, consisting of
Boolean gates such as XOR, AND, NOT, etc. If the circuits are not produced procedurally,
they are synthesized into the BLIF [Ber] circuit model description format by the Yosys Suite
[WGK13]. Then, a transformation is applied to merge multiple sets of gates into LUTs with
multiple inputs and singular outputs. Yosys-ABC provides tools to perform this transformation
according to several different heuristics.

We use the script of Fig. 5.2 as arguments to perform the transformation into multi input-
single output circuits. Note that we fix the LUT input size to at most 8, as this is a tried and
tested number which is plausible for execution and storage of circuits ([Wig21] showed that
larger sizes are detrimental due to the exponential growth in programming bit sizes).

In an intermediary pre-processing pass for benchmarking, as lined out by Fig. 5.1, we need
to reduce the fanout of the circuits still, as we otherwise would cause the creation of too
many EUGs. This is exasperated by the fact, that merging multiple gates, effectively adds the
amount of outgoing wires up. The fanout reduction is performed by postprocessing the multi
input-multi output SHDL graph and adding in copy gates.

41



5 Evaluation

Parse Ver-
ilog/ Bristol

flatten

optimize for size
of and gates

output blif

read blif

fold gates to
fanin at most k

topo sort

write bench

dynamic?

Reduce Fanout
by copy gates

merge multi
input gates to

multi input-multi
output gates with
at most k fanin

and l fanout

Compile to
Universal Circuit

y

n

Figure 5.1: Workflow for benchmarking
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yosys :
read_<<v e r i l o g /bench>> <path to c i r c u i t f i l e >
f l a t t e n ; opt ; proc ; opt ; memory ; opt ; fsm ; opt ; techmap ; opt ;
w r i t e _ b l i f <outputpath>

yosys−abc :
r e a d _ b l i f <outputpath>
s t r a s h ; dc2 ; f r a i g ; ret ime ; s t r a s h ;
dch −f ; i f −K 8 −F 200 −a ; mfs ;
topo
cec
p r i n t _ s t a t s
write_bench <outputpath>

Figure 5.2: Yosys scripts for multi input-single output LUT synthesis

The BENCH format file is now translated into SHDL in order to apply a custom transformation
script that creates multiple outputs. This is done by collecting sets of LUTs that share some
inputs and are of the same topological order (this is necessary to prevent the creation of
cycles) and merging them into a single node. As the inputs of a gate might change, we need
to reprogram the truth tables for each output, such that the inputs which are not important
for one specific output, but are included for other outputs, are treated like don’t care values,
i.e., they have no influence on that particular output; the truth table is still described on all
inputs, including those without influence, and the given output value is the same value we
would choose if we evaluated the old gate of that output on the inputs with influence. Note
that a parameter might be used to control the amount of outputs, a single LUT can have at
most. We finally output the circuit in the SHDL format and compile it with the UC compiler
both in the dynamic (in place) and fixed approach with either the Valiant [Val76] or Liu et al.
[LYZ+21] EUG construction.

Another option in compiling a circuit, given as compiler flag −s is the strong gate description
hiding. This flag disables the reuse of output values in the fixed construction, by copying the
truth table of an outgoing wire as many times as the original output was used, thus hiding
each of the uses as a different output of the LUT. This extra hiding, which makes the security
more strict, comes at the cost of having potentially larger LUTs and thus increasing the size
of our UC. The adjustment of the strong gate description hiding, along with the selection
of used mergings in the dynamic approach, however, should only be done under careful
consideration, as it has both security and performance implications, which might lead to
undesirable leakage of properties of the function.

An overview of compiler options can be seen in Tab. 5.2.

For measuring the AND gate sizes, we tally up, all the gates of the circuit description file,
where we have
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Flag Description

− f Input circuit file in SHDL format
−l Use Liu’s [LYZ+21] EUG construction
−i Use in-place (dynamic) construction
−s Use strong gate description hiding
−−mer gings < k > Control amount of EUGs used in dynamic approach (default 2)
−n Disable randomized correctness check

Table 5.2: Flags for the UC compiler with description

1. #AND(X-Gate)= 1

2. #AND(Y-Gate)= 1

3. #AND(m→ n ULUT)= (2m − 1) ∗ n

These sizes derive from our descriptions of ULUTs as well as [AGKS20].

5.3 Circuits for Arithmetic

We now investigate the results of the constructions empirically. The size results generally are
the number of AND gates used in the UC unless described otherwise. Whenever we refer to
just Multi In constructions in our data, we compiled the circuit in the framework [Wig21] for
comparison. Also, whenever a black line is added to the plot, it describes the number of AND
gates for the classical boolean approach without LUTs. Also note that whenever we refer to
Input/Output arity x in any plot, we sample the smallest achieved UC size over all possible
circuit compilations of the circuit with (k, l) ∈ [8]× [8] as in Fig. 5.1 with max(k, l) = x .
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Figure 5.3: Smallest size of a UC of a 256 Bit RCA with ULUTs of at most x In/Outputs per
ULUT with Valiant EUGs for the fixed construction

For the 256-RCA circuit we observe the sizes reported in Fig. 5.3. As expected, for ripple carry
adders, the optimal size is achieved in the dynamic construction with fanin 3 and fanout 2
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(set of Full Adders) with some gates of lower fanin and fanout. This is due to the fact that
we can use 256 ULUTs, one per Full Adder. Each Full Adder ULUT requires (23 − 1) ∗ 2= 14
AND gates, a similar Boolean representation requires 15 gates per full adder. Also, because
the topology inside of the LUT is not hidden, we save on the size for EUGs compared to the
classical boolean setting of [AGKS20]. For the fixed construction, the best size is achieved
if all LUTs are of arity 3→ 2. The dynamic approach, which is SPFE is better than the PFE
approach (fixed construction) by approximately 13%. This is the case, because for a more
varied gate size distribution, we can push down the number of needed LUTs further, while
using the natural benefit of the adaptive input/output sizes of our dynamic construction.
There is an ≈ 30% size improvement for Ripple Carry Adders over the dynamic construction
of [Wig21] in our dynamic construction with both using Liu’s EUG. For the fixed construction
we achieve a ≈ 18% improvement over [Wig21] in total size. Note that this improvement for
the same fanin/fanout k gets smaller with larger k, as the circuit representation with k ≥ 3
fanin/fanout gets less efficient. We would have to reduce the overall size of the circuit to be
embedded by the factor k to yield a better improvement for larger input/output sizes, but as
of the time of this writing, it is not possible.
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Figure 5.4: Size of a UC of a 256 Bit RCA with ULUTs of at most x In/Outputs per ULUT
with Liu EUGs for the fixed and dynamic construction

As Fig. 5.4 lines out, using Liu’s Construction instead of Valiant yields a general improvement
in sizes independent of other parameters. The Valiant construction however is included as this
allows us to compare our improvement towards [AGKS20], as the construction of [Wig21]
with k = 2 is the same construction. We therefore have the same improvement in relation to
[AGKS20].

If we compare the distribution of the contribution of gate types to the size of a circuit in
Fig. 5.5, the difference in the contribution of the ULUTs becomes noticeable. In the fixed
construction, the ULUTs make up a larger amount of the gates, as many LUTs are padded
out to the largest occurring ULUT. In the dynamic construction, a larger percentage of the
size is given by X and Y gates. This is caused by the larger EUGs which are needed to
accommodate auxiliary poles, while having fewer and individually sized LUTs, thus, changing
the distribution.
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Figure 5.5: Percentage of AND gates by gate types in a UC of the 256-RCA
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Figure 5.6: Size of a UC of a Karatsuba multiplier with ULUTs of at most x In/Outputs per
ULUT with Liu EUGs for the fixed and dynamic construction
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Another important circuit for arithmetic is the Karatsuba multiplier. For the Karatsuba
multiplier, we observe in Fig. 5.6 a similar improvement of≈ 45% for the dynamic construction
as well as 5% for the fixed approach. The dynamic approach is approximately 25% smaller
than the fixed approach.

5.4 Cryptographic Circuits

We will benchmark cryptographic circuits only with Liu’s EUG construction, as it has the same
or smaller sizes than Valiant’s construction for any circuit. The evaluation of cryptographic
circuits yields the results in Fig. 5.7 for AES, Fig. 5.8 for SHA-256, Fig. 5.9 for SHA-1 and
Fig. 5.11 for MD5.
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Figure 5.7: Size of a UC of the AES block cipher with ULUTs of at most x In/Outputs per
ULUT with Liu EUGs for the fixed and dynamic construction

For the AES block cipher, the result shows no improvement in size for the fixed construction.
The dynamic construction achieves an improvement of ≈ 25% in the case of k = 2. The
overall optimal construction for AES is now the 2→ 2 ULUT dynamic construction with Liu
EUGs.

For the fixed construction in Fig. 5.8, SHA-256 does not achieve a strong improvement for the
same reasons as MD5 (the improvement is around 5%). The dynamic construction meanwhile
improves by 21% in the case of at most 4→ 4 LUTs.

The size improvement is observably lower under cryptographic circuits than other types of
circuits. This is largely due to the strong interconnectedness of gates inside of the circuit,
which prevents a much smaller description in terms of LUTs with multiple outputs, because
merging many LUTs with large fanout themselves, creates LUTs with even larger fanouts.

As Fig. 5.10 demonstrates, the gate sizes are not evenly distributed in the case of AES, which
leads to a weaker improvement. Because many gates are single input-single output, but with
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Figure 5.8: Size of a UC of the SHA-256 Hash with ULUTs of at most x In/Outputs per ULUT
with Liu EUGs for the fixed and dynamic construction

1 2 3 4

·106

2

4

6

8

Size of Universal Circuit

In
pu

t/
O

ut
pu

t
A

ri
ty

Multi In Fixed
Multi In/Out Fixed

0.5 1 1.5 2 2.5 3

·106

2

4

6

8

Size of Universal Circuit

In
pu

t/
O

ut
pu

t
A

ri
ty

Multi In Dynamic

Multi In/Out Dynamic

Figure 5.9: Size of a UC of the SHA-1 Hash with ULUTs of at most x In/Outputs per ULUT
with Liu EUGs for the fixed and dynamic construction

many wire usages, the current tooling struggles with integrating them into larger ULUTs as
to distribute the size more evenly. Ideally for the fixed construction, we want to achieve a
unimodal distribution in the lower minor (small input and small output sizes), which may
tamper out to larger fanin/fanout to only a small degree, to avoid over-allocating large
ULUTs for a circuit which might have a simpler description. For the dynamic construction
however, a more varied distribution is more beneficial, as we thus make use of the adaptive
fanin/fanout nature of the approach (otherwise we would have to increase the number
of mergings, effectively transforming the approach gradually into the fixed approach). By
Handcrafting the AES circuit from 2→ 1 ULUTs for the XOR operations and 8→ 8 ULUTs for
the S-Boxes, we may achieve better sizes, but this could no longer be tested due to a lack
of time and because the used tools could not accomplish such a construction on their own.
Under all cryptographic circuits SHA-1 achieves the largest improvement over all at ≈ 26%
in the dynamic construction. For cryptographic circuits it is also not always the case, that the
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Figure 5.10: Distribution of LUT sizes for different maximum fanin/fanout LUT gates for the
AES block cipher circuit.

dynamic construction outperforms the fixed construction. This is the case if the distribution
of gate sizes is not mixed, thus needing a larger depth in case of the dynamic construction.

For the fixed construction of MD5, only if we choose k = 4, 5, 6, 7 we get a small improvement
over the classic construction, but no overall improvement, as the 3→ 1 construction still
yields the smallest size. Note that we can still perform this construction in the new compiler,
thus producing at least the same size, as multi input-single output LUTs are a special case of
our constructions. The worse performance in MD5 for the fixed construction can be explained
by both a combination of the test methodology and the inherent problem of the method.
As we have merged multiple gates with large fanout, we get a single gate with even larger
fanout but of different output wires. This results in the necessary creation of many copy gates
per output (currently we do not yet create copy gates that can forward multiple different
results). This drastically increases the amount of gates to be embedded and thus the possible
improvement being negated by the much larger size of the EUGs. A solution would either
be to support copy gates of that kind or to provide circuits of better quality or even further
rework the testing environment to prevent the merging of to many gates and to tactically
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Figure 5.11: Size of a UC of the MD5 hash with ULUTs of at most x In/Outputs per ULUT
with Liu EUGs for the fixed and dynamic construction

better distribute the fanout (this is precisely why submodules in the RCA contribute to the
better performance). As can be seen in Fig. 5.11, the dynamic construction does not suffer
from this problem, as it does not have to provide copy gates. For the dynamic construction,
we achieve an overall improvement of ≈ 17, 5% in size.

5.5 General Circuits

We now want to benchmark circuits, which are not directly linked to a real world application,
but are instead procedurally generated. These more general circuits are either random or
constant, meaning that we either have up to n gates with varying numbers of inputs, outputs
and uses, or exactly n gates which all have the same input and the same output number (and
same number of uses for each output). For these more general circuits we can describe in
a clearer fashion the nature of our construction methods and highlight their performance
under more ideally controlled conditions.

If we compile randomized circuits with at most 10000 gates, 1000 inputs and outputs each,
and fanin/fanout parameters as given in Fig. 5.12, the dynamic construction outperforms the
fixed construction in all cases, except the case 2→ 2 where the performance stays the same.
The largest improvement is observed in the 8→ 8 case, where an improvement of factor
20 is observed (a size improvement of ≈ 95%). An important observation is also, that the
dynamic construction grows very slow compared to the fixed construction with increasing
fanin, almost staying constant in case of low fanouts. The fixed construction however shows
accelerated growth in size, starting from fanout 4.

Compiling under the same parameters, but with constant gate sizes (all gates in a circuit
have the same fanin/fanout), the opposite observation can be made in Fig. 5.13. In all cases,
the size of the circuits grow accelerated with growing fanin. This acceleration in growth
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Figure 5.12: Size of UCs (#AND gates) of a random circuit with atmost 1000 inputs, 10000
LUTs with arity atmost x → r and 1000 outputs (log scaled)

is the same in both constructions. The overall improvement for the dynamic to the fixed
construction varies by ≈ 7−46%, except for the case 2→ 2 where both constructions perform
the same again.
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6 Conclusion

In this work we have given two methods for constructing multi input-multi output gate
Universal Circuits of a smaller size than the state-of-the-art on the basis of leaking arity
information of submodules. We achieved an improvement in the overall size of the UC for
all circuits of arithmetic and cryptographic circuits tested for our dynamic construction by
≈ 33%. With our fixed construction, most of the circuits are improved by about ≈ 15%
in size, while not all circuits have an improvement, due to their topology and our current
testing methodology. We argued the general use of these constructions both in terms of
their complexity as well as in measurements of more generalized performance on procedural
circuits. We provided a method for creating multi input-multi output gate circuits from
Boolean circuits, to allow easy use of our framework, especially for circuits, which are not
yet given in an optimized submodule description.

6.1 Implications and extra Observations

As noted prior, the provided framework allows to define a gradient of secrecy where we may
control if we want to leak some information about our circuit or not and to what extent. It
is however, difficult to pin down precisely how much information we end up leaking, i.e.,
how much the search space of all possible functions is reduced by leaking arity information
of gates and reusage of partial results. The practical benefit comes from having to evaluate
less outputs in a LUT and smaller EUGs, thus decreasing the circuit size and accelerating the
evaluation of the secure multiparty computation protocol. The provided framework shows
heavy dependance on the underlying topology of the circuit to be embedded, as well as the
actual ability to significantly collect gates in a circuit to multiple inputs and outputs, for its
improvements. Therefore, few uses of partial results inside of a circuit, as well as a propper
boundary of abstraction into submodules (which would then ideally be small LUTs in a later
synthesis) should be considered, when designing larger circuits to be embedded with these
methods.

6.2 Future Work

As already noted earlier, one helpful tooling for achieving more optimal UCs, could be a Verilog
technology mapping, which flattens submodules only up to the first level of hierarchy, and
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6 Conclusion

collects all the remaining submodules into LUTs, finally immediately mapping the resulting
circuit description into a LUT based circuit description. Current toolings, mostly dedicated to
the FPGA market, primarily target multiple inputs, which hinders the ability to make use of
multiple outputs due to a lack of circuits.

Another possible improvement lies in the dynamic construction method. Several auxiliary
nodes yield a surplus of inputs/outputs, which essentially go to waste, because they no longer
serve any function inside of the embedding, remaining only as artifacts to the security. A
method for finding subsequent nodes in the embedding, which, under respect of topological
order, may make use of these inputs/outputs. Thus we may create less auxiliary nodes,
further improving upon the size, as this method optimizes the use of auxiliary poles as a more
globalized resource.
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