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Abstract

Credential stuffing attacks allows an adversary to hijack an account published in a data
breach. To prevent these attacks, the industry provides so-called Compromised Credential
Checking (C3) tools that allow users to check if their credentials are leaked in a data breach.
However, state of the art tools like HaveIBeenPwned (HIBP) and Google Password Checkup
(GPC) Chrome extension (USENIX Security’19) leak a prefix of the hashed credentials of the
user which is enough information to exploit a successful credential stuffing attack as shown
by Li et al. (ACM CCS’19).

In this thesis, we give the first C3 protocol that achieves perfect anonymity, i.e., it leaks
no information about the user’s credentials. For this protocol, we use Private Information
Retrieval (PIR) that allows a client to securely query a database entry while the server learns
no information about the client’s query. Since modern PIR schemes are not efficient enough
for a real-world deployment, we introduce Query-Dependent Preprocessing PIR that moves n−1

n
of the online computation to an offline phase for n≥ 2 servers. We show that C3 with PIR is
practical by implementing our query-dependent preprocessing optimizations. We measure the
performance of the 2-server PIR part of our C3 protocol on a database with 2 billion entries,
which results in 1.8 MB communication and 13 seconds runtime over a WAN network.
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1 Introduction

Data breaches occur more and more in the recent years. These breaches contain highly
sensitive information about users, e.g., their passwords. The most prominent breach con-
tains more than two billions of password and is called Collection 1-5 [Gre19]. Thomas et
al. [TLZ+17] show that 6.9% of the breached credentials are still in use even on non-exposed
platforms. This enables adversaries a basis for credential stuffing attacks, where the adversary
compromises accounts by trying leaked passwords on other services. Usually, the affected
platforms reset the passwords of their users after an expose, but this does not alert the
users significantly about the risk of using the same credential on other platforms. So, there
is a demand for tools that enable users to check if their credentials are breached - called
Compromised Credential Checking (C3) tools [LPA+19].

On the market, there exist two C3 tools called HaveIBeenPwnd (HIBP) [Shi19] and EN-
ZOIC [ENZ16b]. Recently, Thomas at al [TPY+19] published their Google Password
Checkup (GPC) tool as Google Chrome extension that is the first C3 service protecting
against malicious clients, who want to learn information about credentials from other people.
They achieve this with the help of a Private Set Intersection (PSI) protocol that enables two
parties to jointly compute the intersection of their secret sets without revealing anything but
the result. However, all of these tools have the problem that they leak a prefix of the hashed
credentials, since PSI is just used on a small subset of the whole database, namely all entries
having the same prefix. A PSI protocol on the whole database would avoid such leakages,
but it is too inefficient for large-scale databases.

Li et al. [LPA+19] showed that the knowledge of the credential’s prefix suffices to compromise
up to 86% of the leaked accounts within 1000 attempts (even up to 73% of account that
are not included in a data breach). They also provide two new C3 protocols that protect
the user’s sensitive information better but the transcript still leaks information that enables
credential stuffing attacks.

Thomas et al. [TPY+19] and Li et al. [LPA+19] both suggest the use of so-called Private
Information Retrieval (PIR) to provide a C3 tool that leaks nothing but the result. PIR allows a
client to retrieve a database entry from a server, while the server learns no information about
the query. However, [TPY+19] and [LPA+19] state that current techniques are not efficient
enough to be operated in a real-world deployment. In this thesis, we demonstrate the opposite
and show that we can use PIR in an efficient C3 tool that leads to perfect anonymity.

For our C3 protocol we need an efficient PIR scheme since this highly influences the perfor-
mance. We have a closer look at RAID-PIR by Demmler et al. [DHS14; DHS17] that is a

1



1 Introduction

multi-server PIR scheme which extends Chor et al.’s PIR scheme [CGKS95], where n≥ 2 non-
colluding servers share a database and each server interacts with the client. Those schemes
are generally more efficient than single-server PIR schemes, but have the disadvantage that n
servers are needed that are assumed to not collude. We operate RAID-PIR in a two server set-
ting for our C3 protocol since two non-colluding servers is the easiest setting to realize to date.
For this, we extend the existing RAID-PIR scheme into our new so-called Query-Dependent
Preprocessing PIR model. This model lets the servers choose a part of the client’s query and
moves n−1

n of the online computation to an offline preprocessing phase without loosing any
privacy, where n is the number of PIR servers. We implement the RAID-PIR scheme with our
query-dependent preprocessing improvements and obtain up to 40% better runtime than the
original RAID-PIR scheme for n= 2 servers.

An application for PIR is in private set inclusion protocols, that check if an item is included
in the database without letting the server learn the requested item. Example databases for
these kind of application are medical data and patents. Demmler et al. also use PIR for their
anonymous messaging service called OnionPIR [DHS17].

1.1 Contributions and Outline

Our main contributions are summarized below:

• We provide a new multi-server PIR model, called Query-Dependent Preprocessing, that
allows per-query preprocessing by the servers and thus significantly reduces the online
computation time (Sect. 3.3).

• We adapt the RAID-PIR scheme of Demmler et al. [DHS14; DHS17] in the query-
dependent preprocessing model, implement it, and gain up to 40% better performance
for n = 2 servers and up to 63% for n = 3 servers than the original scheme (Sect. 3.3.2)
by moving n−1

n of the online work to an offline preprocessing phase.

• We transfer the database compression idea of Tamrakar et al. [TLP+17] to PIR and call
this Compressible PIR (Sect. 3.4).

• We adapt the C3 scheme by Thomas et al. [TPY+19] to gain the first privacy-friendly C3
protocol that leaks no information about the client’s data while still protecting against
malicious clients. For this, we use our query-dependent preprocessing RAID-PIR scheme
with a compressed database (Sect. 4.3).

• We show the practicability of our C3 scheme with PIR by measuring the time-critical PIR
part on a database with two billion passwords, which results in 1.8 MB communication
and 13 seconds runtime for n= 2 servers (Sect. 6.3).
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1 Introduction

Outline. We give related work on PIR in Sect. 1.2.

In Chapt. 2, we provide our notations (Sect. 2.1) and background information, containing
Private Set Intersection (PSI) in Sect. 2.2 and the method of four Russians Sect. 2.3.

Chapt. 3 contains details about the RAID-PIR scheme [DHS14; DHS17] as well as our
optimizations. We firstly present our understanding of a PIR model in Sect. 3.1. Thereafter,
we give a complete description of Demmler et al.’s RAID-PIR scheme [DHS14] with the
improvement of [DHS17] in Sect. 3.2. Based on that, we introduce our new Query-Dependent
Preprocessing PIR model and describe our improvement of the RAID-PIR scheme [DHS14;
DHS17] in Sect. 3.3. In Sect. 3.4, we introduce Compressible PIR that can be applied to most
PIR schemes. We finish this chapter with an analysis of the communication and computation
complexity of the presented RAID-PIR variants in Sect. 3.5.

In Chapt. 4, we give related work on C3 and describe our new C3 protocol. Sect. 4.1
summarizes state of the art C3 tools and Sect. 4.2 describes the GPC protocol by Thomas et
al. [TPY+19]. Our new C3 protocol based on PIR is given in Sect. 4.3.

Some details of our Query-Dependent Preprocessing RAID-PIR implementation are given
in Chapt. 5, specifically, the construction of our framework in Sect. 5.1 and our realization of
the most time-critical part - the huge number of XOR operations - in Sect. 5.2.

We evaluate our implementation in Chapt. 6. Therefore, we explain our setup in Sect. 6.1 for
the PIR benchmarks in Sect. 6.2 as well as the benchmarks for the PIR part of our new C3
protocol in Sect. 6.3.

Finally, we conclude this thesis in Chapt. 7 and give some future work directions.

1.2 RelatedWork on Private Information Retrieval (PIR)

Several PIR constructions were developed in the last years. We distinguish between multi-
and single-server PIR. Multi-server PIR requires multiple non-colluding servers and is often
very efficient, while single-server PIR just requires one server but is less efficient. We briefly
summarize the most relevant PIR schemes below.

Multi-Server PIR. The idea of information theoretically secure PIR and a first construction
was developed by Chor et al. in [CGKS95]. Their construction relies on n non-colluding
servers where each server receives a query from the client and sends a response to it. Gold-
berg provides another more robust PIR construction in [Gol07] that is based on Shamir’s
secret sharing scheme [Sha79] as well as the additively homomorphic encryption scheme of
Paillier [Pai99]. A PIR scheme is called robust if the client receives the requested data even
if some servers are corrupted. These two PIR schemes are compared in [OG11] alongside
some single-server PIR schemes as well as the trivial solution, namely downloading the
whole database. [OG11] conclude that the scheme of [CGKS95] has a better response time
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than [Gol07]. However, depending on the database size and the available bandwidth, the
trivial solution of downloading the entire database is even more efficient than all tested
PIR schemes. An implementation of [CGKS95]’s PIR scheme was provided by [Cap13]. It
was demonstrated that their implementation can be used for downloading software updates
from a server nearly as quickly as downloading it with FTP. Another PIR scheme called RAID-
PIR that is based on Chor et al.’s construction [CGKS95] was developed and implemented
by [DHS14; DHS17]. Their scheme is more efficient than Chor et al.’s scheme and allows
multi-block queries. We detail the RAID-PIR construction in Sect. 3.2. Multi-block queries
were introduced by Henry et al. in [HHG13]. They extend Goldberg’s PIR scheme [Gol07]
by replacing Shamir’s secret sharing [Sha79] with the ramp secret sharing variant [BM84].
While the scheme is able to efficiently query for multi-block queries while keeping privacy,
the robustness of the scheme is reduced. A verifiable PIR scheme which allows the client to
detect cheating servers was proposed in [ZS14]. Augot et al. [ALS14] give a storage-efficient
PIR scheme where the servers only have to hold a part of the database. The 2-server PIR

scheme of [DG15] has communication complexity of O(N (
log log N

log N )
1
2 ) for a database with N

entries.

Multi-Server PIR with Preprocessing. The bottleneck of many multi-server PIR construc-
tions for large databases is the online computation time. For this reason, Beimel et al. [BIM00]
proposed to include an offline preprocessing step that takes over some work that the server
would process during the online phase. For instance, they design a preprocessing algorithm
for Chor et al.’s protocol [CGKS95] that precomputes the XORs of some sub-cubes if the
database is considered as a 3-dimensional cube. The server has to combine only the necessary
stored values for the query which are in average much less XOR operations than XORing all
the entries in the query. They also prove that every secure multi-server PIR protocol needs to
access every entry in the database for each query without using preprocessing.

Demmler et al. [DHS17] also adapt this idea for their RAID-PIR scheme [DHS14] where each
combination of XOR for subsets of a specific length are computed and stored in a preprocessing
step using the Method of four Russians [ADKF70] for fast matrix multiplications and a Gray
code to precompute these values efficiently.

These two previous works only spend a one-time offline effort to precompute database-
dependent values that reduces the online computation to a constant number of XOR opera-
tions. Our scheme additionally spends multiple times effort to precompute query-dependent
preprocessing values by letting the servers choose a part of the client’s query. Thus, our scheme
reduces the number of XOR operations significantly compared to Beimel et al.’s [BIM00] and
Demmler et al.’s [DHS17] optimizations.

Single-Server PIR. Kushilevitz and Ostrovsky [KO97] showed that PIR can also be achieved
with a single server under computational assumptions. They use a recursive process that
partitions the database in every query until the recursion base is reached. However, [CMO00]
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proved that single-server PIR implies Oblivious Transfer (OT), i.e., we cannot get single-server
PIR solely from one-way functions due to the separation result of [IR89]. Olumofin and
Goldberg [OG11] showed in their experiments that the lattice-based single-server PIR scheme
of [MG08] can be more efficient than downloading the whole database.

Another approach for single-server PIR is homomorphic encryption like the scheme of [KLL+15;
LP17], which achieves a rate of (1−o(1)). The communication rate of a PIR scheme is defined
as (log2 N + l)/L where l denotes the bitwidth of each element of the N database entries
and L is the communication of the protocol. This scheme is not yet practical for large-scale
databases since it is based on the homomorphic encryption scheme of [DJ01] that requires
the server to compute a modular exponentiation for each bit of the database. Recently, Gentry
and Halevi [GH19] developed a compressible fully homomorphic encryption scheme that
can be used for efficient single-server PIR on large-scale databases. They conclude in their
analysis that an implementation of their scheme should be faster than downloading the whole
database and the server’s computation measured in clock cycles could even be faster than
encrypting the database with AES-NI.
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2 Preliminaries

In this chapter we introduce basic notations, definitions and concepts used throughout
this thesis. Our notations are given in Sect. 2.1. In Sect. 2.2, we briefly define Private Set
Intersection (PSI) that is used by [TPY+19]’s Google Password Checkup (GPC) protocol shown
in 4.2 and by us for our new Compromised Credential Checking (C3) protocol presented
in Sect. 4.3. We introduce the Method of four Russians [ADKF70] in Sect. 2.3 that is used by
Demmler et al. [DHS17] for optimizing the RAID-PIR scheme [DHS14].

2.1 Notations

In this section, we give our basic notations and definitions used throughout this thesis.
Tab. 2.1 shows the variables used for describing Private Information Retrieval (PIR) schemes
in Chapt. 3, and Tab. 2.2 extends and overwrites the variables used for C3 in Chapt. 4.

We write [n] for the set {0, . . . , n− 1} and [x; y] for the set {x , x + 1, . . . , y − 1} for x < y.
The XOR of bit a and bit b is denoted by a⊕ b and is 1 iff a ̸= b.

2.2 Private Set Intersection (PSI)

Private Set Intersection (PSI) is a cryptographic protocol that allows two parties to compute
the intersection of their private inputs X and Y . At the end of the protocol both parties only
learn the intersection X ∩ Y of their inputs. The first construction was proposed by Meadows
in [Mea86] and is based on the Diffie-Hellman key exchange.

[KLS+17] optimize four existing PSI protocols for the special case where the input set of one
party contains only a few elements (e.g., 1024 elements) while the set of the other party
is very large (e.g., millions of elements). Two of their protocols are further improved and
implemented on mobile clients by [KRS+19].

Example applications for PSI with unequal set sizes are contact discovery on smartphones
and discovering leaked passwords. The first application was integrated in the open-source
messenger Signal as proof-of-concept by [KRS+19]. In the latter case one party holds a set
that contains only one element (its password) while the other party holds a set of leaked
passwords with millions of elements. For example, Thomas et al.’s GPC tool [TPY+19] has a
set of 2.2 billion leaked username and password combinations.
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2 Preliminaries

Variable Definition
D raw data, i.e., a sequence of 0 and 1
D[i] i-th entry of D, usually each entry has the same length
Di i-th block of D, where each block contains a specific number of entries
d specific data entry in D
N number of data entries
DB a database, that builds a logical structure about raw data D
DBi part of the database that is stored by server i
Mi memory for precomputations of server i
Q i queue for (seed, value)-pairs of server i
n number of servers
id x index of the data entry D[id x] or the block Bid x the clients wants to retrieve
qi PIR query for server i
ai PIR answer of server i
b size of a block
B number of blocks in which D is separated
Bi block number i
c number of chunks
Ci chunk number i
f l ipi flip chunk for server i
k number of blocks in each chunk
r redundancy parameter, i.e., the number of chunks each server has to process

e j
i j bit zero string with a 1 at position i
κ security parameter
si κ bit seed for server i generated on client side
Si κ bit seed for server i generated on server side
Ai precomputed value of server i
t size of the groups for precomputation

Table 2.1: Notations for Private Information Retrieval (PIR).

7



2 Preliminaries

Variable Definition
u username
p password
a client’s private key for PSI
b server’s private key for PSI
H hash value
Ha hash value blinded with the client’s private key a
H b hash value blinded with the server’s private key b
Hab hash value blinded with client’s and server’s keys a and b
z prefix parameter, i.e., the number of bytes indicating the block position
P specific block / partition of the database DB

Table 2.2: Notations for Compromised Credential Checking (C3).

2.3 Method of four Russians

The Method of Four Russians [ADKF70] refers to an algorithm with complex-
ity O((log d)(v3/ log v)) that is able to find the transitive closure of a directed graph hav-
ing v nodes and diameter d.1 Such a graph can be represented by an adjacency matrix that
specifies for each pair of nodes if they are connected by an edge. The problem of finding the
transitive closure of a graph is equivalent to exponentiating the boolean adjacency matrix.
So, the method of four Russians can be used for matrix squaring and a matrix multiplication
algorithm can be derived from the original algorithm. Demmler et al. [DHS17] use this
matrix multiplication algorithm for improving their RAID-PIR scheme [DHS14] as described
in Sect. 3.2.

Let us fix a a×b binary matrix A and a b×c binary matrix B. To compute the a×c matrix C we
can split A into b/t groups A0, . . . , Ab/t−1 of t columns, and B into b/t groups B0, . . . , Bb/t−1
of t rows. Then Ci = AiBi is an a× t times t × c matrix multiplication resulting in an a× c
matrix for i = 0, . . . , t − 1 as also described in [Bar09]. We can derive the matrix C as
follows:

C = AB =
b/t−1
∑︂

i=0

AiBi =
b/t/1
∑︂

i=0

Ci . (2.1)

Arlazarov et al. [ADKF70] make a Gray code table M i containing all 2t linear combina-
tions for matrix Bi for group i = 0, . . . , t − 1. The entries in the Gray Code table are or-
dered s.t. neighbors online differ by exactly one bit, e.g., a Gray Code over 3 bit is the
sequence (000, 001, 011, 010, 110, 111, 101, 100). The g-th entry in a Gray code table can be
computed as g ⊕ (g >> 1). The advantage of using Gray codes for precomputing the linear

1A graph’s diameter specifies the longest shortest path between any two nodes.
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2 Preliminaries

combinations is that each entry in the table can be computed by adding one t-bit value to the
previous computed linear combination, since neighboring Gray codes only differ in one bit.
If bit j of the next Gray code is flipped, we can add the j-th entry of Bi to the previous linear
combination to compute the correct sum.

For computing AB, we initialize the a× c matrix C with zeroes and divide it into t b/t × c
sub-matrices C0, . . . , Ct−1. Let g j be the t-bit binary number of row j of matrix A. We can
add M i,g j to sub-matrix C j for i = 0, . . . , b/t − 1 and j = 0, . . . , a − 1, where M i,g j denotes
the entry of M i with Gray code g j .

9



3 Private Information Retrieval Optimizations

Private Information Retrieval (PIR) describes a protocol between a client and n servers that
allows the client to securely query data in a public database DB held by the servers. At
the end of the protocol the servers should learn neither the query nor the data that the
client receives, while the client learns the queried entries. It is necessary that some of the
servers are non-colluding. The idea and first construction for PIR was given in [CGKS95]. We
focus on so-called Multi-Server PIR schemes since they have lower computational overhead
that is valuable for mobile clients. In multi-server PIR the database DB is split over n ≥ 2
non-colluding servers and the client sends a request to each of the servers.

3.1 Our PIR Model

We define a classical PIR protocol as a tuple of algorithms (Create, Request, Response,
Combine) as summarized in Prot. 3.1 and described below:

Create takes as input some data D and outputs the tuple (DBi , Mi) for each server i ∈ [n].
A database DB is generated from the data D and a unique part of the database denoted
as DBi is sent to server i. Additionally, the Create algorithm may allocate memory Mi for
each server i that is used for some precomputations which depend only on DB like in the
RAID-PIR scheme [DHS14; DHS17]. This step is done one time for setting up the system
without any communication to the client.

Request takes as input the index id x of the data to access and outputs a query qi for each
server i. Response is called on each server. It takes the query qi as input and outputs an
answer ai based on the local database DBi and precomputed memory Mi . The client collects
the answers a0, . . . , an−1 of each server and calls the Combine algorithm that outputs the
desired data entry d.

A PIR scheme is called secure if any combination of less than t < n servers does not learn any in-
formation about the index id x or the requested data d = D[id x] from their combined view of
queries qi . A PIR scheme is called correct if D[id x] = Combine(Response0(Request(id x)[0]),
. . ., Responsen−1(Request(id x)[n − 1])), where Responsei denotes the function call of
server i.

10



3 Private Information Retrieval Optimizations

Server i Client

input: D

(DBi , Mi)← Create(D)
input: id x

(q0, . . . , qn−1)← Request(id x)

qi

ai ← Response(qi , DBi , Mi)

ai

d ← Combine(a0, . . . , an−1)
output: d

Protocol 3.1: Message flow for a classical PIR protocol. The protocol is shown for server i
with i ∈ [n]. Note that the client communicates with all n servers.

3.2 RAID-PIR [DHS14]

The multi-server PIR scheme RAID-PIR was developed by Demmler et al. [DHS14] and
further improved in [DHS17]. RAID-PIR uses ideas from Redundant Array of Inexpensive
Disks (RAID) storage systems like distributing the data over multiple servers to improve
performance. As the disks in RAID, the servers only have to store parts of the data which
then are combined using XOR operations. We give the pseudocode for the algorithms in our
PIR model from Sect. 3.1 in Listing 3.2.1 and explain more details next.

The offline method Create splits the input data D into B blocks of size b each denoted
as B0, . . . , BB−1, i.e., D has Bb bits (line 4 in Listing 3.2.1a). These blocks are again split
into c ≤ B chunks C0, . . ., Cc−1, where Ci = Bki|| . . . ||Bki+k−1 for i ∈ [0; r[ and k = B/c
denotes the number of blocks for each chunk (lines 8 - 10 in Listing 3.2.1a).1

We define the whole database DB as DB = C0|| . . . ||Cc−1. However, only a subset of the DB
is sent to each server, denoted as DBi. A redundancy parameter r with 2 ≤ r ≤ c gives us
the number of chunks that each server has to process per query. The getChunks function
from line 12 in Listing 3.2.1a returns the r chunks that server i has to touch. Concretely,
getChunks(i, C0, . . ., Cc−1) returns the chunks Ci, Ci+1 mod c, . . . , Ci+r−1 mod c. Mi is set
to ⊥ since there is no precomputation in the original RAID-PIR scheme by [DHS14] (line 13
in Listing 3.2.1a). We describe the precomputation improvements of [DHS17] in Sect. 3.2.2.

1For simplification, we assume that c = n that is a realistic setting. We note that c > n is only considered for the
special case of multi-query RAID-PIR. In this case, the client can access up to c database entries within one
query. We describe this in more detail in Sect. 3.2.1.

11
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RAID-PIR without Preprocessing

1 // raw data D
2 function Create(D)
3 // s p l i t D i n to B b locks
4 (B0, . . . , BB−1)← D
5 Let c be the number of

chunks
6 k← B

c
7 // s p l i t b locks in to c

chunks
8 for i ∈ [c] do
9 Ci ← Bki|| . . . ||Bki+k−1

10 endfor
11 for i ∈ [n] do
12 DBi ← getChunks(i, C0, . . . , Cc−1)
13 Mi ←⊥
14 end for
15 // database DBi
16 // precomputat ions Mi
17 return

((DB0, M0), . . . , (DBn−1, Mn−1))
18 end function

(a) Create
1 // database DBi
2 // precomputat ions Mi
3 // query qi
4 function Response(DBi , Mi , qi)
5 parse qi to ( f l ipi , si)
6 q← f l ipi||PRG(si)
7 ai ← q · DBi
8 // answer ai of s e r ve r i
9 return ai

10 end function

(b) Response

1 // index id x
2 function Request(id x)
3 // generate quer i e s for each

se rve r and chunk
4 for i ∈ [n] do
5 si ←$ {0,1}κ

6 for j ∈ [c] do
7 q j

i ← generateSubQuery(si , i, j)
8 end for
9 end for

10 // combine a l l que r i e s and
f l i p the id x−th b i t

11 Q←
⨁︁n−1

i=0 q0
i || . . . ||qc−1

i
12 ( f l ip0|| . . . || f l ipc−1)←Q⊕ eB

id x
13 for i ∈ [n] do
14 qi ← ( f l ipi , si)
15 end for
16 // query qi for s e r ve r i
17 return (q0, . . . , qn−1)
18 end function

(c) Request
1 // answers a0, . . . , an−1
2 function Combine(a0, . . . , an−1)
3 d ←
⨁︁n−1

i=0 ai
4 // des i red data block d
5 return d
6 end function

(d) Combine

Listing 3.2.1: Pseudocode for the four RAID-PIR algorithms [DHS14] without precomputa-
tions.

After setting up the system the client can call the Request method on input id x to retrieve
the block Bid x . The idea of RAID-PIR is that each server computes XOR operations on a

12
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q0 011010 100010 011001
q1 101101 010110 100001
q2 001101 001101 101001
q3 010111 001011 001000
e24

9 000000 000100 000000 000000

Figure 3.1: Example RAID-PIR queries with n = 4 servers, B = 24 blocks, c = 4 chunks,
chunk size k = 6 and redundancy parameter r = 3. The orange cells are the flip
chunks for the servers while the white cells contain the random sub-queries. The
client requests the block with index 9.

subset of their stored blocks and sends the result back to the client. The client computes the
XOR on all received results and obtains the block Bid x . The subset of blocks that each server
touches is determined by the query that the client sends. In Chor et al.’s protocol[CGKS95],
the client samples a random B-bit query qi for servers i = 0, . . . , n− 2 while the query qn−1
for server n−1 cancels out all unwanted blocks with qn−1 = eB

id x ⊕q0⊕ . . . ⊕qn−2, where eB
id x

is the B bit zero vector with a one at position id x .

In RAID-PIR the query that cancels out all unwanted blocks is distributed over all n servers.
The first chunk that each server i stores, namely Ci , is the so-called flip-chunk. This flip chunk
cancels out all unwanted blocks within this chunk. So, the client generates a (r − 1)k-bit
random query for each server i and computes the query for their flip-chunk denoted as f l ipi .
A small example is given in Fig. 3.1.

Instead of sending the whole random part of the query to server i, the client randomly
samples a κ-bit seed si (line 5 in Listing 3.2.1c), where κ = 128 is the security parameter
that holds κ ≪ (r − 1)k for large databases.

The algorithm Request achieves this goal as follows. It generates a random seed si for each
server i (line 5 in Listing 3.2.1c). With this seed, we compute the sub-query q j

i for each
chunk j for server i by calling generateSubQuery(si , i, j). This function gives us a k-bit zero
string if chunk j is not processed by server i or if i = j. In all other cases a k-bit string is
returned determined by passing si to a pseudorandom generator PRG, i.e., (qi+1 mod c

i , . . .,
qi+r−1 mod c

i ) = PRG(si).

In line 11 in Listing 3.2.1c, we set Q =
⨁︁n−1

i=0 q0
i || . . . || qr−1

i , which gives us the accumulated
random query so far. By computing Q⊕ eB

id x we get the flip chunk f l ipi for each server i as
in line 12 in Listing 3.2.1c. Each server i receives the query qi = ( f l ipi , si) (lines 13 - 15 in
Listing 3.2.1c).

For the Response method, each server i calls PRG(si)with si from qi and retrieves qi+1 mod c
i , . . .,

qi+r−1 mod c
i . Each qi

j [ f l ip j] is a k-dimensional vector while the corresponding C j is a k× b

matrix with rows Bk j , . . . , Bk j+k−1. By multiplying a j
i = q j

i C j [a
j
i = f l ipiC j] we retrieve the

13
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q0 010010 100010 011001
q1 101101 010110 100001
q2 001101 001100 101001
q3 010111 001011 011000
e 001000 000100 000001 010000

Figure 3.2: Example Multi-Query RAID-PIR queries with n= 4 servers, B = 24 blocks, c = 4
chunks, chunk size k = 6 and redundancy parameter r = 3. The orange cells
are the flip chunks for the servers while the white cells contain the random
sub-queries. The client requests the blocks with indices 2, 9, 17 and 19.

answer of server i as ai = (ai
i , . . ., ai+r−1 mod c

i ).2 Then, ai =
⨁︁r−1

j=0 a j
i is the answer of server i.

Instead of processing one matrix multiplication for each chunk, we create a (kr)-dimensional
vector q out of f l ipi and PRG(si) in line 6 in Listing 3.2.1b, consider DBi as a (kr)× b matrix
and compute ai = q · DBi (lines 6 - 7 in Listing 3.2.1b).

At the end of the protocol the client calls the Combine method that computes d =
⨁︁n−1

i=0 ai to
obtain d = Bid x .

3.2.1 Multi-Query RAID-PIR [DHS14]

As already mentioned, RAID-PIR allows multi-query PIR, i.e., a client can receive up to c
blocks within one query under the condition that the queried blocks are chunk-disjoint.
Fig. 3.2 adapts the example from Fig. 3.1 to the multi-query case.

If the client requests the blocks with indices id x0, . . ., id xc−1, line 12 of the Request algorithm
in Listing 3.2.1c has to be modified as follows:

( f l ip0||...|| f l ipc−1)←Q⊕ eB
id x0
⊕ . . .⊕ eB

id xc−1
. (3.1)

In the Response method in Listing 3.2.1b, server i computes the values a j
i as described

above and sends them all to the client. The client then computes for each chunk j the
output d j =
⨁︁n−1

i=0 a j
i .

3

If the client only retrieves one block, we have r times more communication from the server to
the client in the multi-query variant of the protocol since the servers send a randomized block
for each of their chunks. However, if the client queries multiple blocks, the multi-query variant
is more efficient when the requested blocks are distributed equally along the chunks. We
analyze and compare concrete communication and computation complexities in Sect. 3.5.

2Note that the matrix multiplication is on bit-level, i.e., multiplications and additions are AND and XOR
operations.

3Some a j
i are undefined since not every server processes all chunks. We set these undefined values to 0b without

loosing correctness.
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3.2.2 RAID-PIR with Preprocessing [DHS17]

While the communication of the RAID-PIR protocol is very efficient, the vector-matrix mul-
tiplications on the server side are the bottleneck of the protocol. Therefore, Demmler et
al. [DHS17] use the Method of four Russians [ADKF70] to precompute some parts of the
results.

They propose that in addition to the RAID-PIR scheme without preprocessing shown in List-
ing 3.2.1, the Create algorithm assigns the memory Mi the returned value of algorithm
FourRussians(DBi) shown in Listing 3.2.2 and the Response algorithm is replaced as shown
in Listing 3.2.2.

The FourRussians algorithm splits the database DBi into groups of size t. This is done by
splitting each chunk j of the server’s r chunks into ⌈k/t⌉ groups (line 7 in Listing 3.2.2a).
The idea is that each of the 2t combinations of each group is precomputed, i.e., the server
just has to read the precomputed data for a group instead of XORing all t blocks in the group
depending on the query. For reducing computation Demmler et al. [DHS17] use Gray codes
for precomputing these combinations. The advantage of Gray codes is that two successive
codewords in the Gray code only differs in only one bit, i.e., the corresponding precomputed
values also only differ in only one block. So, we only have to compute one XOR operation
on b bits for computing one of the r

� k
t

�

2t entries in the memory Mi .

The Gray code for an element g is the value g ⊕ (g >> 1) (line 15 in Listing 3.2.2a). Offset o
gives us the index of the block in which the current Gray code and the previous Gray code
differ. The precomputed value at the Gray code’s position in the current group z in chunk j is
the last precomputed value XOR the o-th block in this group (line 18 in Listing 3.2.2a). We
denote this precomputed value as M j,z,gra ycode

i where gra ycode is the current Gray code.

The Response algorithm also splits the client’s query in groups of size t (lines 6 and 11
in Listing 3.2.2b).4 We initialize the answer ai to 0b and process XOR operations step by
step with a subset of the precomputed values in Mi. Concretely, we choose exactly one of
the 2t precomputed values in Mi for each group depending on the corresponding sub-query
(line 13 in Listing 3.2.2b). For each chunk, the server now only has to compute ⌈t/n⌉−1 XOR

operations instead of k XORs in [DHS14]. This time, the server i sets a j
i =
⨁︁⌈k/t⌉−1

m=0 M
j,m,q j,m

i
i ,

i.e., the server only has to compute ⌈t/n⌉ − 1 XOR operations instead of k XORs for each
chunk. The efficiency of the Response method grows linearly with t while the size of the
memory Mi grows exponentially.

An advantage of preprocessing RAID-PIR is that the number of XOR operations is constant
for each query. This prevents Denial of Service (DOS) attacks where an attacker can generate
a worst case scenario in which a server has to perform a huge number of XOR operations.

4Firstly, the server extracts the query for each chunk in line 6 in Listing 3.2.2b and splits the extracted sub-queries
into groups of size t.
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RAID-PIR with Preprocessing

1 // database DBi
2 function FourRussians(DBi)
3 Let t be the groups ize
4 groups← ⌈k/t⌉
5 // redundancy parameter r
6 for j ∈ [r] do
7 (C j,0, . . . , C j,groups−1)← C j
8 for z ∈ [groups] do
9 l gc← 0 // l a s t Graycode

10 gc← 0 // cur ren t
Graycode

11 di f f ← 0 // Graycode
d i f f e r e n c e

12 M j,z,0
i ← 0b

13 for g ∈ [1; 2t] do
14 l gc← gc
15 gc← (g ⊕ (g >> 1))
16 di f f ← gc ⊕ l gc
17 Let o be the p o s i t i o n

of the 1 in di f f
18 M j,z,gc

i ← M j,z,l gc
i ⊕ C j,z[o]

19 end for
20 end for
21 end for
22 // precomputat ions Mi
23 return Mi
24 end function

(a) FourRussians

1 // database DBi
2 // precomputat ions Mi
3 // query qi
4 function Response(DBi , Mi , qi)
5 parse qi to ( f l ipi , si)
6 (q0

i , . . . , qr−1
i )← f l ipi||PRG(si)

7 Let t be the groups ize
8 groups← ⌈k/t⌉
9 ai ← 0b

10 for j ∈ [r] do
11 (q j,0

i , . . . , q j,groups−1
i )← q j

i
12 for z ∈ [groups] do

13 ai ← ai ⊕M
j,z,q j,z

i
i

14 end for
15 end for
16 // answer ai of s e r ve r i
17 return ai
18 end function

(b) Response

Listing 3.2.2: Pseudocode for the algorithm FourRussians and the modified Response algo-
rithm for the RAID-PIR scheme with precomputation.

3.3 Query-Dependent Preprocessing

Previous works like [BIM00; DHS17] use preprocessing to reduce the online computation
for the server by merging parts of the database into groups in a one-time offline phase,
s.t. the server has to compute a constant number of XOR operations online. During the
Response method, the servers only have to combine the precomputed parts depending on the
query qi. Our idea is to split the preprocessing into two parts - the Database Preprocessing
and the Per-Query Preprocessing. The database preprocessing is a one-time precomputation
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step that maps the database into a state that enables the servers to compute their answer
more quickly as described in Sect. 3.2 and in [BIM00; DHS17]. In addition, the per-query
preprocessing is a routine that precomputes concrete parts of the server’s answer in a separate
process, i.e., it is a continuous process that only pauses if the reserved memory space for
computed concrete parts of the server’s answer is full or under certain conditions, e.g., if the
server receives a query, the server uses its whole computation power to process the query and
therefore pauses the Preprocess routine. In Chapt. 5, we explain and discuss some possible
conditions. We define our new preprocessing model in Sect. 3.3.1.

Server i Client

input: D

(DBi , Mi)← Create(D)
Q i ← []
Start Preprocess

input: id x

(Si , Ai)←Q i .pop()

Si

(q0, . . . , qn−1)← Request(id x , Si)

qi

Pause Preprocess

ai ← Response(qi , DBi , Mi , Ai)
Start Preprocess

ai

d ← Combine(a0, . . . , an−1)
output: d

Protocol 3.2: Message flow for a query-dependent preprocessing PIR protocol. The protocol
is shown for server i with i ∈ [n]. In this variant, the servers pauses the
Preprocess algorithm so that they can use there whole computation power for
the Response algorithm. Note that the client communicates with all n servers.

3.3.1 Query-Dependent Preprocessing Model

A PIR scheme in the query-dependent preprocessing model is a tuple of algorithms
(Create, Preprocess,Request,Response, Combine). The protocol is shown in a high-level
in Prot. 3.2.
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As in our model from Sect. 3.1, the Create algorithm takes some input data D and outputs
the tuples (DBi , Mi) for each server i ∈ [n]. A database DB is generated from the data D
and a unique part of the database denoted as DBi is sent to server i. Additionally, the Create
algorithm may allocate memory Mi for each server i that is used for some precomputations
which depend only on DB. This step is done one time for setting up the system without any
communication to the client.

Each server runs the Preprocess algorithm locally in parallel in a separate thread that can be
started and paused. It takes as input the database DBi and the memory space for precompu-
tations Mi , adds query-specific tuples (Si , Ai), and stores them in the queue Q i until it is full
or the thread is interrupted. Afterwards it is paused until it is again started when there is
new space for more values in Q i .

Request takes as input the index id x of the data to access in addition to some seeds S1, . . . , Sn
from the n servers that contain information for creating suitable queries q1, . . . , qn. A query
is suitable if it helps the servers to save computation time by using data from the queue Q i .

Each server i calls the Response algorithm on input DBi, Mi, Ai and the received query qi.
Within this method the servers compute their answers ai .

In the last step, the client collects all the server answers ai , . . . , an and calls the Combine
algorithm that gives the requested data entry d = D[id x].

3.3.2 RAID-PIR with Query-Dependent Preprocessing

In the following, we extend the RAID-PIR scheme [DHS14; DHS17] into a PIR scheme in the
query-dependent preprocessing model. The Create and Combine algorithms are identical
to the original RAID-PIR scheme with the preprocessing optimization described in Sect. 3.2
and shown in Listing 3.2.1. In contrast to RAID-PIR [DHS14; DHS17], the servers choose
the seed for generating their random sub-queries. For this seeds, they already compute the
necessary XOR operations and store the results locally. When the servers receive a query, they
send the precomputed seed to the client, who collects all the seeds and generates the flip
chunk queries for the servers. After the servers receive the query for their flip chunks, they
take the precomputed data related to the previous sent seed and only compute the remaining
XOR operations specified in the flip chunk query.

The Request algorithm is slightly changed to the one presented in Listing 3.2.1. It takes
- aside from the index id x - the seeds S0, . . ., Sn−1 from the servers as inputs. In line 5
in Listing 3.2.1c on page 12, we do not sample the seed anymore since the server did that
already, i.e., we set si = Si. Since the servers already know their seeds, the client does not
need to send it back again, so we set qi = f l ipi in line 14 in Listing 3.2.1c.

Pseudocodes of the remaining two algorithms Preprocess and Response are given in List-
ing 3.3.1. Preprocess is the new algorithm of this RAID-PIR scheme in the query-dependent
preprocessing model that is called by each server i on inputs DBi, Mi and Q i. Server i
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samples a random κ-bit seed Si (line 8 in Listing 3.3.1a) to generate the pseudo-random
sub-queries for all of its non-flip chunks (line 9 in Listing 3.3.1a). With these sub-queries the
server can XOR the blocks of all non-flip chunks specified in the sub-queries similar to the
Response method of the preprocessing RAID-PIR scheme described in Sect. 3.2 and shown in
Listing 3.2.2. In line 19 in Listing 3.3.1a, we push the seed-value pair (Si , Ai) to the queue Q i
and repeat all these steps until Q i is full.

The Response algorithm splits the received query for the flip chunks into groups of size t
(line 9 in Listing 3.3.1b). We initialize the answer ai with the precomputed value Ai (line 8
in Listing 3.3.1b) and process XOR operations step by step with a subset of the precomputed
values in Mi similar to the Response algorithm from the preprocessing RAID-PIR scheme
described in Sect. 3.2 and shown in Listing 3.2.2.

It is important that the server discards the used seed after each protocol execution and never
reuses it otherwise, the servers could launch the following attack: Assume a n = 2 server
setting where server 0 has a constant set of seeds where it randomly chooses one for each
query. A malicious server 1 could collect received queries by clients in a list L and computes
for each new incoming query q the Hamming distances between q and the queries stored in L.
Server 1 can then make some assumptions about the client’s requesting data. The Hamming
distance h between q and an entry in L denoted as q′ can be interpreted as follows:

h= 0: It holds that q = q′, i.e., the client either requests the same entry in the server’s flip
chunk or some entry not included in its flip chunk.

h= 1: It is very likely that either q or q′ is the query that completely cancels out the seed of
server 0, i.e., the server can determine the block that one of the two queries accesses,
namely the one where the two queries distinguish.

h= 2: It is very likely that q and q′ both access blocks in the malicious server’s flip chunks,
namely these two blocks where the two queries differ.

h> 2: The server has not received a similar query yet, so we cannot make any assumption
about the client’s query.

The more data the server collects, the more fine-grained assumptions can it make about the
client’s query. This attack also works in a PIR scheme where more than two servers operate.
The only requirement is that all servers have a fixed set of seeds they use. So, to prevent this
attack, we let the servers discard every seed after using it.

3.4 Compressible PIR

Multi-server PIR schemes allow clients to securely retrieve information without letting the
servers know what information the clients want to access. However, if the servers collude,
they learn the desired data entry and the client’s privacy is broken. Another drawback of
multi-server PIR is the large amount of data the servers have to store, especially for the
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RAID-PIR with Query-Dependent Preprocessing

1 // database DBi
2 // precomputat ions Mi
3 // queue of ( seed , value )−

p a i r s Q i
4 function Preprocess(DBi , Mi ,Q i)
5 Let t be the groups ize
6 groups← ⌈k/t⌉
7 while Q i i s not f u l l do
8 Si ←$ {0, 1}κ

9 (q1
i , . . . , qr−1

i )← PRG(Si)
10 Ai ← 0b

11 for j ∈ [1; r] do
12 (q j,0

i , . . . , q j,groups−1
i )← q j

i
13 for z ∈ [groups] do

14 Ai ← Ai ⊕M
j,z,q j,z

i
i

15 end for
16 end for
17 // seed Si
18 // value Ai
19 push (Si , Ai) to Q i
20 end while
21 end function

(a) Preprocess

1 // database DBi
2 // precomputat ions Mi
3 // precomputed answer Ai
4 // query qi
5 function Response(DBi , Mi , Ai , qi)
6 Let t be the groups ize
7 groups← ⌈k/t⌉
8 ai ← Ai

9 (q0,0
i , . . . , q0,groups−1

i )← qi
10 for z ∈ groups do

11 ai ← ai ⊕M
0,z,q0,z

i
i

12 end for
13 // answer ai of s e r ve r i
14 return ai
15 end function

(b) Response

Listing 3.3.1: Pseudocode for the algorithm Preprocess and the modified Response algorithm
for the RAID-PIR scheme with query-dependent preprocessing.

preprocessing. To improve the current situation, we transfer the database compression idea
of Tamrakar et al. [TLP+17] to PIR and call this optimization Compressible PIR.

Compressible PIR encapsulates a PIR scheme and can therefore be applied to any PIR scheme
that is based on blocks. [TLP+17] use a compression to decrease the size of a database for
their private membership test scheme. They use a compression function ρ on the database,
where their decompression function ρ−1 requires the knowledge of the whole database. Since
the client only retrieves one block of the database and decompressing a whole database on
server-side would be very inefficient, we apply the compression function ρ to each block of
the database, i.e., the client does not need to know any information but the retrieved block
to decompress the block. For a better compression, we increase the blocksize b. Thus, we
gain less blocks while the blocks contain more information and are additionally compressed
which leads to saving storage / memory. A side effect of compressible PIR is the high rate of
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multi-queries within one query, since there are much more entries in a block. However, it can
be very unlikely that two desired entries are located in the same block. On the one hand, this
leads to more communication from the servers to client since the blocksize b grows, but on
the other hand, the communication from the client to the servers reduces since there are less
blocks.

We gain the best communication complexity C(b) by setting the blocksize b̂ =
p

|D|/c,
where |D| is the size of the database and c denotes the number of chunks. The total com-
munication for the RAID-PIR scheme [DHS14] with preprocessing [DHS17] as described
in Sect. 3.2.2 and our query-dependent preprocessing scheme presented in Sect. 3.3 is given
in Eq. (3.2), where k denotes the number of blocks in each chunk, B denotes the number of
blocks and κ is the security parameter. A detailed derivation of Eq. (3.2) is given in Sect. 3.5.

C(b) = k+ κ+ b

=
B
c
+κ+ b

=
|D|
bc
+ κ+ b

(3.2)

One can easily show by derivation that C(b) has its local minimum at b̂ =
p

|D|/c =
p

|D|/n
if we assume c = n, where n denotes the number of servers.

For our measurements in Sect. 6.3, we use the compression scheme of [TLP+17] for each
block. The idea is, that we first sort the whole database before we separate it into blocks.
Assume, a block has the entries (e0, . . . , eN ). Since the database is sorted, successive entries
are close to each other and thus we can store their differences instead of the whole entries
themselves: (e0, e1−e0, e2−e1, . . . , eN−eN−1). It is easy to see that the length of the differences
is smaller than the length of the entries.

3.5 Communication and Computation Complexity of RAID-PIR
Schemes

In this section, we analyze the communication, computation and storage complexity of
the RAID-PIR scheme by Demmler et al. [DHS14], the improved version using preprocess-
ing [DHS17], our improvement utilizing query-dependent preprocessing and the multi-query
variants of all the schemes. A summary of the three complexities with concrete values is
given in Tab. 3.1.
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Setup. Since the multi-query variants are worse if the client only retrieves one block, we
assume that the client wants to learn u blocks. For the multi-query schemes, we distinguish
between the best case, average case and worst case scenario regarding the distribution of
the u blocks the client wants to retrieve since this highly influences the performance of
those schemes. So, for the multi-query schemes we denote with U the number of necessary
queries to retrieve all u blocks. In the best case scenario, all blocks are distributed equally
along the c chunks (U = u/c) while in the worst case scenario, all wanted blocks are in
the same chunk (U = u). The average case assumes that the blocks are equally distributed
over half of the blocks (U = 2u/c). Demmler et al. [DHS17] force best case scenarios by
distributing large data d with |d|> b over chunk-disjoint blocks. However, this only works
for databases containing data entries that are larger than the blocksize, which does not hold
for our Compromised Credential Checking (C3) scenario.

We determine the upload (from client to server) and download (from server to client)
communication separately. The computation complexity is determined by the number of
XOR operations during the protocol (i.e., we do not count the computations in Create and
Preprocess) since they are the bottleneck of the online phases of the schemes. We also
separate client and server computation.

RAID-PIRwithoutPreprocessing (Sect. 3.2). The client sends a κ bit seed and a k bit query
for each of the u blocks to each server, while each server sends a b bit answer to the client for
each block. So, we have a very efficient upload of un(k+κ) bits and download of unb bits.
We explain the online computations for the server and the client in the following. First of, we
have a different look at line 11 of the client’s Request algorithm in Listing 3.2.1c on page 12.
For each of the c chunks there are (n− r) of the subqueries q j

i zero bit vector of size k since
every server only processes r chunks. As a consequence, we do not have to count the XOR
operations over zero vectors since an optimized implementation would also not compute
them (Note that we will assume this for the other schemes, too). So, we have r − 1 XOR
operations over k bit each in line 11 in Listing 3.2.1c. One more XOR operation over B bits is
processed in line 12 in Listing 3.2.1c. This are in total u(c(r − 1)k+ B) = u(B(r − 1) + B) =
uBr XOR operations. In the Combine algorithm, the client additionally computes n − 1
XOR operations over b bits, i.e., the client has a total computation of u(Br + (n− 1)b) XOR
operations. The server XORs approximately half of the blocks in DBi over b bits each, which
are in total urkb/2 XOR operations. Each server holds r chunks of the database, which
are rkb bits.

For the multi-query variant the upload is U · n(k+κ). Each server replies with r blocks per
chunk for each query, so the client downloads Uncb bits. The client and server computation is
similar to the non-multi-query variant, namely U(Br+(n−1)b) and U rkb/2 XOR operations,
respectively.

RAID-PIR with Preprocessing (Sect. 3.2.2). The client’s upload, download and computa-
tion complexity is equal to the RAID-PIR scheme without preprocessing. Only the server’s
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computation and the necessary storage differs. For each chunk, the server XORs k/t blocks of
size b, so this are in total urkb/t XOR operations (U rkb/t for the multi-query variant). While
the server’s online computation reduces by a factor of t, the storage increases exponentially
by a factor of ≈ 2t . For each group, the server has to store 2t blocks of size b each. There are
in total ck/t groups, so the server has to store 2t ckb/t bits.

RAID-PIR with Query-Dependent Preprocessing (Sect. 3.3.2). The upload reduces by κ
bits per query since the server sends the seed in the query-dependent preprocessing RAID-
PIR scheme. So, we have an upload of unk bits (Unk for the multi-query variant). As
already mentioned, the κ bits are moved to the download, which are in total un(κ + b)
bits (Un(κ+ cb) for the multi-query variant). The client’s computation is equal while the
server’s computation reduces extremely. Each server XORs k/t blocks only on its flip-chunk,
i.e., the server processes ukb/t XOR operations (Ukb/t for the multi-query variant). The
storage slightly increases compared to the RAID-PIR scheme with preprocessing since (κ+ b)
bits are stored for each precomputed. If the server has a capacity ε for precomputed values,
the total storage are 2t ckb/t + ε(κ+ b) bits.
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Scheme Communication Complexity Concrete Value
RAID-PIR [DHS14] un(k+κ+ b) 5 092
RAID-PIR P [DHS17] un(k+κ+ b) 5 092
RAID-PIR QDP [this thesis] un(k+κ+ b) 5 092

(a) Communication Complexity (Bytes)

Scheme Computation Complexity Concrete Value
RAID-PIR [DHS14] u(Br + (rk/2+ n− 1)b) 1 606.5
RAID-PIR P [DHS17] u(Br + (ck/t + n− 1)b) 406.3
RAID-PIR QDP [this thesis] u(Br + (k/t + n− 1)b) 206.3

(b) Online Computation Complexity (thousand XORs)

Scheme Storage Complexity Concrete Value
RAID-PIR [DHS14] rkb 3.2
RAID-PIR P [DHS17] 2t ckb/t 102.4
RAID-PIR QDP [this thesis] ε(κ+ b) 102.5

(c) Storage Complexity (MB)

Table 3.1: Summary of communication (a), computation (b) and storage (c) complexity of
RAID-PIR [DHS14], RAID-PIR with preprocessing (P) [DHS17] and RAID-PIR with
query-dependent preprocessing (QDP) (this thesis). We also give concrete values
using our parameters from one of our benchmarks in Sect. 6.2. We choose n =
2 servers, redundancy parameter r = 2, blocksize b = 1 265, N = 100 000 database
entries, which results in B = 2530 blocks, security parameter κ = 16 byte (=
128 bit), groupsize t = 8, c = 2 chunks, a query buffer with ε = 100 elements, k =
B/c = 1265, and u= 1 query.
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In this chapter, we investigate Compromised Credential Checking (C3) that allows users
to learn if their credentials are published in a data breach. Data breaches have become a
very important topic since the online presence of billions of people are affected. Billions
of username-password pairs are published in plaintext as so-called Collection 1-5 [Gre19].
Most people are not aware of the security of their passwords since they believe that it is not
worthwhile to attack them. So, it is very important that we have C3 tools that notify people
if their credentials are leaked in a data breach. Additionally, the users should not have much
effort to change their password otherwise they ignore the warnings.

We look at existing C3 tools and discuss their security in Sect. 4.1. In Sect. 4.2 we detail the
complete protocol of Google’s Chrome plugin Google Password Checkup (GPC) [TPY+19].
We extend GPC in Sect. 4.3 with a Private Information Retrieval (PIR) scheme and provide
the first C3 tool that achieves perfect anonymity for the user.

4.1 Compromised Credential Checking Tools

In the recent years, some C3 tools were developed. The most prominent APIs are HaveIBeen-
Pwned (HIBP) [Hun19] and ENZOIC [ENZ16a]. Recently, Google published the Chrome
extension GPC [TPY+19] that checks in real-time and in a privacy-preserving manner if a
username and password combination is published in a data breach, whenever the user inputs
their credentials to a website. Li et al. [LPA+19] design two C3 protocols called Frequency-
Smoothing Bucketization (FSB) and ID-based Bucketization (IDB). We can distinguish four
different types of queries for C3 tools.

Username. Firstly, one can query the username, i.e., the checkup tool looks if passwords
were published in combination with a given username. However, this information does not
necessarily tells the user if a password is attacked, rather notice the users that at least one
password is published in combination with their username. In many cases, this might be
enough information since most of the users reuse the same password for different domains
(or even use the same passwords for all services). But often, the published password is an
old one and consequently the user is not affected.

Domain. Similarly, we face the same problem if we query a specific domain that might be
affected by data breaches. The breached password could also be an old one or the account
could be created after the date of the breach. If the password is breached at a domain the
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user is not very active, they will not be notified about the breach and the same credentials for
other services are affected.

Password. A safe option for detecting compromised passwords is querying passwords them-
selves even though this requires a lot of trust in the C3 tool. The advantage is that the user
gets notified for all of their active accounts if their password is in a data breach. Thomas et
al. [TPY+19] argue that this option is too over-cautious since an attacker still has problems
to hijack an account if the user’s username is not included in the breach. Most of the services
ensure that attackers cannot brute-force the correct password of the users without much
overhead.

Username + Password. The most user-friendly option is to query the combination of
username and password. If the C3 tool returns a match, the user can be sure that their
account is vulnerable. The drawback of this solution is that the credentials for a user can still
be vulnerable if they use the same passwords for accounts with similar usernames, e.g., if a
given username u with password p is part of a data breach, the user will not be notified for
an account with username u@domain.com. In many cases, a simple search engine query
suffices to learn the E-mail address of a user.

Thomas et al. [TPY+19] conclude that querying the combination of username and password
is the best option due to the user-friendliness. So, their Chrome plugin GPC only supports this
option. Querying only passwords is the safest option since it ensures that the user does not
use passwords published in a data breach, but it can alert the user too often. In both cases,
the user has to trust the C3 tool since highly sensitive information about the password is
sent to a server. The IDB protocol by [LPA+19] also focuses on checking username-password
pairs very similar to GPC with the difference that the query does not contain information
regarding the password. They sort the username-password pairs into blocks, where the block
index is given by the first bytes of the hash value of the username, rather than of the hash
value of the username-password pair. Thomas et al. independently also suggest this protocol
and consider to include this in their GPC plugin [TPY+19]. However, this requires the user to
compute one more expensive hash operation and thus they do not include this optimization
into their plugin.

ENZOIC offers all four options while HIBP renounce the username-password combination.
The FSB protocol by [LPA+19] queries only passwords. In the following sections we summa-
rize some details about most of the mentioned C3 tools or protocols. We give a complete
description of the GPC protocol in Sect. 4.2 and skip the IDB protocol since it is almost
identical to GPC.

4.1.1 HaveIBeenPwned (HIBP) [Shi19]

HIBP is an API that is used by many web services like the 1Password [Shi19] password
manager. Firefox Monitor is a security tool that warns the users when they access a website
that is affected by a data breach. It additionally allows users to query email addresses that
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are forwarded to HIBP. GitHub checks with the help of HIBP if the passwords of their users
are compromised [Mat18].

HIBP use SHA-1 to store the passwords in their database. A client who queries a specific
password firstly computes the SHA-1 hash of their password and sends the first 20 bits to
the server. The server then returns a list of all the password hashes that begin with the
same 20 bits in combination with the number of occurrence in data breaches. Finally, the
client checks if his local computed hash is in the list.

Querying the domain just returns true or false and querying by username returns all the
SHA-1 hashed passwords in the database belonging to the given username in combination
with the number of occurrences.

4.1.2 ENZOIC / PasswordPing [ENZ16b]

PasswordPing is an API that was founded in 2016 - 2 years earlier than HIBP- and recently
rebranded as ENZOIC. ENZOIC is used by, e.g., the password manager LastPass [ENZ16b].

In contrast to HIBP, ENZOIC allows to query the SHA-1 hash of a username that lightly
protects the anonymity of the user. Querying the password works similar to HIBP but reveals
the first 40 bits of the hashed password. A user has the highly non-recommended options to
query the plaintext or the complete hash of the password.

The most interesting option of ENZOIC is querying by the combination of username and
password. The client queries the username or the hash of the username u and receives a
salt s. In the next round the client computes H(u, p, s) with their password p and sends the
first 40 bits of this hash to ENZOIC who returns all matched values.

4.1.3 Google Password Checkup (GPC) [TPY+19]

Google provide an innovative Chrome plugin that alerts the users whenever they enter a
username-password combination that has been published in a data breach. While HIBP and
ENZOIC are secure against the servers (aside from the fact that the servers learn information
about the hash value of the user’s sensitive data), a malicious client can learn information
about the credentials of other users since the hash values in the set of sent passwords are
not blinded. Thomas et al. [TPY+19] protect their scheme against malicious clients by using
Private Set Intersection (PSI) in their protocol. However, their plugin also sends the domain
to the server after each protocol execution [Kuk19] which is not necessary for their protocol.
We give a complete description of the protocol in Sect. 4.2.
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4.1.4 FSB [LPA+19]

Li et al.’s [LPA+19] IDB protocol can not adapted to the querying by only passwords case.
Since this option is more recommended for highly security-sensitive users, they introduce
FSB that works great with the querying only passwords option. Their protocol provides more
security than the password-only option of HIBP and ENZOIC in the sense that an attacker
has less advantage in guessing the password of a user when having access to the protocol
execution view. FSB goes away from the idea of assigning the credentials into the blocks
having the index equal to the first bytes of the hashes. In FSB, passwords are assigned to
blocks depending on their frequencies, i.e., more frequent passwords are assigned to many
blocks. This hardens guessing the correct password for an attacker since the conditional
probability of frequent passwords is made similar to those of less frequent passwords. More
details about this protocol can be found in [LPA+19].

4.2 Google Password Checkup Protocol (GPC) [TPY+19]

Thomas et al. [TPY+19] develop the GPC protocol that consists of four algorithms, namely
CreateDatabase, CreateRequest, CreateResponse and Verdict. The CreateDatabase algorithm
is a setup algorithm that creates the database, similar to our PIR model described in Sect. 3.1.
The remaining three algorithms are shown in Prot. 4.1, where the first part of the client
belongs to the CreateRequest algorithm, the other party to the Verdictalgorithm and the
server’s part are the steps of the CreateResponse algorithm. Within this protocol, a Diffie-
Hellman based PSI protocol is integrated, where the server holds a secret key b and the client
samples a random key a for each request. In the rest of this section, we detail each of the
four algorithms.

CreateDatabase. The CreateDatabase algorithm is a preprocessing step that only has to
be run once by setting up the service and during database updates. The server holds a
set of N username and password pairs D = {(u1, p1), . . . , (uN , pN )} that has to be stored
in a database DB so that a client can securely check if their password is in D. Thomas
et al. [TPY+19] achieve this by hashing each entry (ui , pi) with a collision-resistant hash
function H to Hi = H(ui||pi). They use Argon2 as hash function H that is also used as
proof of work for the client to prevent Denial of Service DOS attacks. Thereafter the
hash Hi is already blinded with the server’s secret key b ∈G for the integrated PSI protocol
with H b

i =Blind(H, b). Since the integrated PSI protocol requires a commutative blinding for
double-blinded messages1, Google’s protocol uses the elliptic curve NID_secp224r1. A prefix
parameter z splits DB into (28)z = 256z blocks (similar to the RAID-PIR scheme by [DHS14]
as described in Sect. 3.2). The block position for the blinded hash H b

i is given by the first z
bytes of Hi , i.e., H b

i is stored in block DBHi[0;z].

1Commutative blinding allows us to unblind a multiple blinded message in any order.

28



4 Compromised Credential Checking (C3)

CreateRequest. When the client creates their request for the server they behave similar
to the CreateDatabase method of the server. The client holds its username and password
pair (u, p) and generates for each request a secret key a. This pair is hashed with the hash
function H as H =H(u||p).2 As before, the hash H is blinded with the clients private key a
to Ha = Blind (H, a). The prefix parameter z is also known to the client so they are able to
extract the first z bytes of H as id x = H[0; z]. In the end, the request is the pair (id x , Ha), i.e.,
the first z bytes of H are revealed to the server. Google’s GPC protocol [TPY+19] sets z = 2
and achieve a B-anonymity of roughly B ≈ 60000, i.e., the server learns in which of the B
blocks the user’s credentials is stored (or would be stored if they are not leaked).

CreateResponse. After the server receives the request (id x , Ha) from the client it transmits
the set of all the values stored in DBid x . The drawback in this step is that the server learns
in which partition of the database the user’s credentials are potentially stored as already
mentioned. Aside from transmitting this set the server blinds Ha with its private key b to
receive Hab =Blind (Ha, b) and sends Hab additionally to the client.

Verdict. In the last step the client finishes the PSI protocol and checks if their credentials are
vulnerable. Therefore, the client unblinds the received value Hab to H b =Unblind (Hab, a).
Finally, the client is able to lookup the value H b in the received database partition DBid x . It
is clear to see that the underlying blinding scheme has to be commutative which is satisfied
by using elliptic curve Diffie-Hellman (ECDH).

4.3 Hiding Queries with PIR

Google’s protocol [TPY+19] provides a privacy-friendly solution for the C3 problem. However,
the user’s anonymity is not completely protected since z = 2 bytes of the hashed credentials
are leaked to Google. To circumvent this problem we use a query-dependent preprocessing PIR
scheme as described in Sect. 3.3, that hides the z bytes from the server at the cost of efficiency.
Thomas et al. [TPY+19] mention that PIR cannot be efficient enough for this application and
therefore do not include in in their GPC protocol although this would protect the user’s data
completely. Their protocol runs in approximately 8.5 seconds and thus it is obviously more
efficient than our C3 tools using PIR, where the PIR part alone takes roughly 13 seconds
(see Sect. 6.3), but we protect the user’s data perfectly. Li et al. [LPA+19] showed in a
simulation that an attacker can guess 33% of user’s passwords within at most 10 attempt
(66% within 1 000 attempts) if they know the protocol transcript of GPC. If an attacker has
no access to the protocol transcript, they can only guess 56% within 1000 attempts. While
it is unlikely that an attacker is able to have 1 000 attempts for most of the services, 10

2Thomas et al.[TPY+19] and Li et al.[LPA+19] independently propose to use H(u) s.t. the server has no
information about the user’s password. However, since the username-password pair is hashed in the server’s
database, the client has to compute H(u) anyway.
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Server Client

input: username||password data D

b←$G
DB← CreateDatabase(D, b)

input: username u, password p

CreateRequest(u, p) :

a←$G
H ←H(u||p)
Ha ← Blind(H, a)

Ha, id x = H[0; z]

CreateResponse(DB, b, Ha, id x) :

Hab ← Blind(Ha, b)
P ← DBid x

Hab, P

Verdict(a, Hab, P) :

H b ← Unblind(Hab, a)

return H b ∈ P // true iff u||p in D

Protocol 4.1: GPC protocol. The four algorithms CreateDatabase, CreateRequest,
CreateResponse, and Verdict are covered in this overview.
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attempts are a realistic setting for an attacker and thus the GPC protocol leaks too much
information. It is easy to see that we achieve perfect anonymity instead of B-anonymity due
to the fact that the server learns no information about the users data since every information
related to the credentials are encrypted or blinded. Using our query-dependent preprocessing
RAID-PIR scheme, we need multiple non-colluding servers. Thomas et al. [TPY+19] argue
that a multi-server PIR scheme is not realistic for this application since it is hard to find two
or more trustworthy servers. However, today it is feasible to find two non-colluding servers.
Even if the two servers are colluding, only PIR breaks and we achieve a similar privacy factor
as GPC. Additionally, we need one more round trip to transmit some randomness that the
client needs to create the query.

In our protocol the workflow is as follows: The server first calls CreateDatabase to initialize
the database that is already prepared for the PIR scheme. A client sends a request to the
server that contains no information necessary for the protocol.3 After the server receives
the request the server sends a seed Si necessary to call the CreateRequest algorithm. The
CreateRequest function sends the queries q0, . . . , qn−1 to the respective server i. Each server
calls the CreateResponse method that computes the query-specific answer ans sends it to
the client. As last step the client calls the Verdict function that terminates the PIR and PSI
sub-protocols to retrieve the potential leaked credentials of the client. It is also suitable to
use our compressible PIR optimization described in Sect. 3.4 by using the 256z partitions as
blocks for our database. Since hashed values are generally distributed equally, the size of
the blocks are very similar. In our case, the entries of the database are sorted, s.t. we can
compress the single blocks by storing the differences of adjacent entries. This technique was
also used in [TLZ+17] and is an effective compression while the overhead of decompression
is small. We give more details about the compression function in Sect. 3.4. An overview of
the online protocol is given in Prot. 4.2 and the four algorithms are described in the following
paragraphs.

CreateDatabase. In our protocol the CreateDatabase method generates the databases for
all of the n > 1 servers. The database DB is exactly created as in Google’s CreateDatabase
method [TPY+19] described in Sect. 4.2, i.e., DB contains B = 256z blocks. It is possible
to increase z without loosing anonymity other than in Google’s protocol where we should
keep z as small as possible. Increasing z means that the DB contains more blocks of smaller
sizes, so the communication is affected, since the last message of the server is one block and
the client sends one bit for each block. In Sect. 3.4, we showed that we achieve the best
communication overhead with a blocksize of b̂ =

p

|D|/n, where |D| is the amount of data.
With |D| = Bb̂ and B = 256z, one can show that z = log256(b̂n) is the parameter with the
best communication.

With the blocksize b̂ and prefix parameter z, we compress each block with our compression
function ρ. Afterwards, we call the C reate function from our query-dependent preprocessing

3Depending on the implementation the query could contain some metadata.
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RAID-PIR scheme to retrieve the precomputed memory Mi. In parallel, the Preprocess
algorithm runs to fill the queue Q i with (seed, value) pairs as described in Sect. 3.3.

After each connection setup from the client, the server pops a (seed, value) pair (Si , Ai) from
the queue Q i and sends the seed Si to the client form which it generates the request.

CreateRequest. In this method the client computes the two values a, Ha, id x as in the
CreateRequest method of Google [TPY+19] described in Sect. 4.2. The client calls the
Request function from the underlying PIR scheme on input id x and S0, . . . , Sn−1 to retrieve
the queries q0, . . . , qn−1. Server i receives the query qi and one of the n servers - let us say
server 0 - additionally receives Ha.

CreateResponse. Server 0 blinds the value Ha with its secret key b and sends the result Hab

to the client. Each server i computes the result Pi calling the Response method of the PIR
scheme on inputs qi , DBi , Mi and Ai and sends Pi to the client.

Verdict. The client unblinds the received Hab to H b as in Google’s Verdict algo-
rithm [TPY+19]. The compressed partition DBÝ id x can be obtained by calling the Combine
method of the PIR scheme on inputs P0, . . . , Pn−1. This partition can be decompressed to DBid x
using the inverted compression function ρ−1. As last step the client checks if H b is included
in DBid x .

We measure the PIR part of this protocol, where the communication is 1.8 MB data and the
runtime is 13 seconds for a database with two billion entries.

32



4 Compromised Credential Checking (C3)

Server Client

input: username||password data D

b←$G
(DBi , Mi ,Q i)← CreateDatabase(D, b)

input: username u, password p

(Si , Ai)←Q i .pop()

Si

CreateRequest(u, p, Si) :

a←$G
H ←H(u||p)
Ha ← Blind(H, a)
id x ← H[0; z]
(q0, . . . , qn−1)← PIR.Request(id x , S0, . . . ,

Sn−1)

Ha, qi

CreateResponse(Ha, b, qi , DBi , Mi , Ai) :

Hab ← Blind(Ha, b)
Pi ← PIR.Response(qi , DBi , Mi , Ai)

Hab, Pi

Verdict(Hab, a, P0, . . . , Pn−1) :

H b ← Unblind(Hab, a)

DBÝ id x ← PIR.Combine(P0, . . . , Pn−1)

DBi xd ← ρ−1(DBÝ id x)

return H b ∈ DBid x // true iff u||p in D

Protocol 4.2: Our C3 protocol with PIR.
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Demmler et al. [DHS14; DHS17] published a Python implementation of their RAID-PIR
scheme1 that is based on the upPIR [Cap13] implementation of Chor et al.’s scheme [CGKS95].
They implement the crucial XOR operations in C using SSE2 intrinsics which allows XOR
operations on 16 bytes in one instruction.

We develop a new C++ implementation of RAID-PIR including our query-dependent pre-
processing optimizations described in Sect. 3.3. To speed up the XOR operations even more,
we automatically include the currently best available Single Input Multiple Data (SIMD)
instructions (we use Intel AVX for our tests) through compiler optimizations. We verified that
the necessary Assembler instructions for the available SIMD unit are generated. Additionally,
we develop a multi-threaded solution for the XOR operations using OpenMP.

5.1 NewQDP-RAID-PIR Framework

Our new QDP-RAID-PIR framework consists of three components: the client, the server and
the database generation. The components are merged in a library that contains everything
necessary to run RAID-PIR. We give an example instantiation for each component that only
has to be slightly adapted to the user’s application.

Every component can be configured with different console outputs and parameters, e.g.,
with different blocksizes or redundancy parameters. For performance reasons, we define the
main parameters in the preprocessor, i.e., on the one hand, all components have to be rebuilt
when modifying these parameters, on the other hand, the compiler optimizations are more
effective. The configurations are global for all components and located in the file config.h.

We test our framework on Linux Debian 10 using the GNU Compiler Collection and CMake
for building the framework. Our framework requires at least the C++17 standard as well as
the Boost [98] and GMP [Fou91] library.

We explain the specifications of the three components and give the available configuration
options next.

1Available at https://github.com/encryptogroup/RAID-PIR.
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Client. The client part of the library contains functions that run the RAID-PIR protocol on
the client side. The two main functions are addServer and request. AddServer takes the IP4
address and the port of a server and connects to that server via the Transport Control Protocol
(TCP). A secure channel via Transport Layer Security (TLS) can be achieved by tunneling in
Linux. At this point, the server is waiting for the client to request the seed.

When the necessary servers are added the client can call request on input x to retrieve the block
with index x . The client then starts a thread for each server to maintain the communication.
Firstly, the client receives the seeds from the servers. When the client receives one seed, the
client directly begins to expand it, generates the corresponding sub-queries and XORs them
into the full query (see lines 5 and 8 in Listing 3.2.1c on page 12). The queries are sent to
the servers again in separate threads and the client waits to receiving the answers. At the
end, all answers are combined to retrieve the desired block. The block is directly returned
from the Request method without any processing since this highly depends on the underlying
application and is not part of the PIR protocol in general. We show an example usage of our
client library in Listing 5.1.

1 #include " QDP_RAID_PIR/QDP_RAID_pirClient . h "
2 #include " . . /QDP_RAID_PIR/helper . h "
3
4 in t main () {
5 auto c l i e n t = RAID_pi rC l ient () ;
6 c l i e n t . addServer ( " 84.121.34.21 " , 7765) ;
7 c l i e n t . addServer ( " 73.17.127.3 , " , 7766) ;
8 auto block = c l i e n t . reques t (3) ;
9 p r i n t B y t e s ( block . begin () , BLOCKSIZE) ;

10 }

Listing 5.1: Example usage of the Client component of the library. The clients connects
to two servers on ports 7765 and 7766 and requests the block with index 3.
Afterwards, the bytes of the block are printed to the console.

Server. The server component contains all functions for instantiating RAID-PIR as server.
Each server has an ID that identifies the part of the DB it stores and processes during
Private Information Retrieval (PIR) protocols (see Fig. 3.1 on page 13 for an example). The
constructor for the server takes as input this ID as well as the source file of the database and
the port number. We directly read the precomputed database generated with the Method of
four Russians [ADKF70] as described in Sect. 3.2, i.e., the precomputation is already finished
and not every server has to compute it. Since the current trend are in-memory systems, we
also assume that the database can be completely stored in the RAM. When the constructor for
the server is called, it also starts a process for generating the query-dependent preprocessing
data (see Sect. 3.3). This thread pauses when the assigned memory for the precomputed data
queue is full or under other conditions, e.g., when the flood of XOR operations is processed in
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order to compute the answer for a client faster. The size of the query-dependent preprocessing
data queue and the events for pausing the thread can be configured as described later in this
section. In every case, the thread is started after popping a (seed, value)-pair from the queue
and continued when the end of an event is reached. However, if a seed is chosen and the
corresponding value is already precomputed, we let the thread write it into the queue even
if an event for pausing the thread occurs. This is implemented with a mutex that is locked
when the computation is done and unlocked when the thread finishes the writing process.

When the connect function is called, the server starts listening on the previous specified port.
The server can handle multiple connections in parallel in which each connection is maintained
in a separate thread. We use the Boost.Asio library for our network implementation. A minimal
example for setting up the server is given in Listing 5.2.

1 #include " QDP_RAID_PIR/QDP_RAID_pirServer . h "
2
3 in t main () {
4 QDP_RAID_pirServer s e r ve r (0 , " raw . db_preprocess . db " , 7766) ;
5 se rve r . connect () ;
6 }

Listing 5.2: Example usage of the Server component of the library. The server with ID 0
listens on port 7766 and provides PIR services for the database stored in the
file raw.d b_preprocess.d b.

GenerateDatabase. The database generation component of the library contains function for
creating databases and transforming databases into a structure that the server implementation
can handle. Our generateRandomDB function takes as input a filename and writes a random
generated database into a file. The specifications like how many entries the database has
and how large an entry is can be specified in the config.h file (details follow later in this
section). One can also decide if the entries are sorted before they are written into the file
using Quicksort [Hoa62].

A database file starts with some meta information, namely the number of entries, the entrysize,
the blocksize and the groupsize. The preprocessor definitions have to match these parameters
when the server uses a given database file since the PIR protocol would not work correctly
otherwise. That is why we check these values before a server proceeds to provide its service.

The function that does the preprocessing of a database is also part of the database generation
component. It takes as input a database as well as a filename, performs the precomputations
on the given database using the method of four Russians (Sect. 2.3), and writes it into the
file. We show an example usage of this component in Listing 5.3.

36



5 Implementation

Parameter Explanation
TIME Define to measure the times needed for single steps.
STATE Define to print information about the current state of the PIR

protocol.
DEBUGINFORMATION Define to print debug information.
SORTING Define to sort the database.

PAUSECONDITION

Condition for pausing the preprocessing thread.
ALWAYS - pause when processing fast XOR operations for a query
NEVER - never pause
HALF - pause only if the queue is at least half full

SERVERS Specifies the number of servers running RAID-PIR.
ENTRIES Specifies the number of entries that the database has.
ENTRYSIZE Specifies the size in bytes for each entry in the database.
BLOCKSIZE Specifies the size in bytes for a block.
GROUPSIZE Specifies the number of blocks that build a group for preprocessing.
CHUNKS Specifies the redundancy parameter, i.e., the number of chunks

each server has to process.
SECURITYLEVEL Specifies the security level, i.e., the number of bits for the seeds.

Default: 128.
NUMBERSEEDS Specifies the size of the query-dependent preprocessing queue.

Table 5.1: Parameters and configuration.

1 #include " QDP_RAID_PIR/ createDatabase . h "
2 #include " QDP_RAID_PIR/manageDatabase . h "
3
4 in t main () {
5 generateRandomDB ( " raw . db " ) ;
6 auto db = readDBFromFile ( " raw . db " ) ;
7 preprocess (db , " raw . db_preprocess . db " ) ;
8 }

Listing 5.3: Example usage of the Generate Database component of the library. We generate
a random database and write it into the file raw.d b. Afterwards, we read the
database from the same file and feed it into the preprocess function that writes
the precomputed database into the file raw.d b_preprocess.d b.

Parameters and Configurations. Our framework has a couple of configurations that can
be made in the config.h file. We give all parameters and configurations in Tab. 5.1.

The PAUSECONDITION is a design decision that highly influences the performance. It specifies
when the process that precomputes (seed, value)-pairs for our query-dependent preprocessing
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model (see Sect. 3.3) gets paused. We measure the robustness of our implementation for
all three conditions in Sect. 6.2.3. The first option (ALWAYS) is to pause it when a new
query from a client is received. In this case, the system uses its complete computation power
to compute the answer for the client. However, if there are many queries, the queue of
precomputed (seed, value)-pairs can become empty s.t. a client has to wait longer.

To avoid the situation of an empty queue, we added the option (NEVER) to never pause the
preprocessing process (except when the queue is full). In this case, the server’s computation
power is shared between the preprocessing process and the answer computation for the client.
The client has to wait longer for the server’s answer than in the first option but it is less likely
that the server has an empty queue.

To combine the advantage of both options, we introduce option (HALF) that only pauses the
preprocessing process when the queue is less than half full. If there are less than a half entries
in the queue, the preprocessing process is not paused to avoid the situation that the queue
becomes completely empty. Only if the queue is at least half full, the process gets not paused
and the client receives its answer more quickly. This option can also be easily extended to
other thresholds than 1/2.

5.2 Fast XOR Operations

In this section, we describe how we accelerate the XOR operations for our query-dependent
preprocessing RAID-PIR scheme described in Sect. 3.3. Our C++ code for the XOR operations
is shown in Listing 5.4.

The C++ code shown in Listing 5.4 works as follows: A process calls the function fastxor to
process a query by the client. It takes as input the variable dest where the result is stored,
the variable data that contains the list of precomputed values described in Sect. 3.2.2, the
variable query which was sent by the client, and the variable groups that specifies the number
of groups that has to be processed, namely the number of groups in the flip chunk of the server.
Since we implement RAID-PIR [DHS14; DHS17] in our query-dependent preprocessing model
(see Sect. 3.3), the variable dest already contains the value from the (seed, value)-pair from
the query Q i of server i (as depicted in Prot. 3.2 on page 17). The offset variable in line 11
of Listing 5.4 specifies the index in data where the next group starts. Since we iterate over
all groups in line 13 of Listing 5.4, the size of the group - namely b · 2t for blocksize b
and groupsize t - is added after each iteration. In line 14 of Listing 5.4, we determine
the concrete index of the precomputed block to XOR. We set the groupsize t = 8 in our
implementation since this is a good trade off between efficiency and storage capacity. Thus,
our byte array query can be read byte by byte in each iteration. Finally, we call the inline
function xorFullBlocks that XORs the determined block into the dest variable in lines 5 and 6
in Listing 5.4.

The code is compiled with the GNU Compiler Collection using the -O3 flag that turns on most
of the optimizations the compiler offers. These optimizations also cover SIMD instructions
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Listing 5.4: C++ code of our XOR operations. The function xorFullBlocks takes two byte
arrays as inputs, computes XOR operations over the blocksize and stores the result
in the dest variable. The fastxor function takes as inputs three byte arrays and a
number. It computes an XOR operation for each group over the blocksize using
the xorFullBlocks function. The precomputed values for the groups are stored in
the data array while the query array specifies the blocks to XOR. BLOCKSIZE
and GROUPSIZEP2 are constant values defined in the configuration file (Note,
that GROUPSIZEP2 is not included in Tab. 5.1 since this is a constant that a user
should not modify. Concretely, it computes 2GROUPSIZE.).

1 constexpr s td : : s i z e _ t p reOf f s e t = BLOCKSIZE ∗ GROUPSIZEP2 ;
2
3 in l ine constexpr void xo rFu l lB lo ck s ( s td : : byte ∗dest , const s td : :

byte ∗data ) {
4 #pragma omp simd reduct ion(^:des t [ : BLOCKSIZE ] )
5 for ( s td : : s i z e _ t i = 0; i < BLOCKSIZE ; ++i ) {
6 des t [ i ] = data [ i ] ^ dest [ i ] ;
7 }
8 }
9

10 in l ine constexpr void f a s t x o r ( s td : : byte ∗dest , const s td : : byte ∗
data , const s td : : byte ∗query , const uint64_t groups ) {

11 s td : : s i z e _ t o f f s e t = 0;
12 #pragma omp p a r a l l e l for shared ( o f f s e t )
13 for ( s td : : s i z e _ t i = 0; i < groups ; ++i , o f f s e t += preOf f s e t ) {
14 s td : : s i z e _ t temp = o f f s e t + ( s ta t i c _cas t<s td : : s i z e _ t> ( query [ i

] ) ∗ BLOCKSIZE) ;
15 #pragma omp c r i t i c a l
16 xo rFu l lB lo ck s ( dest , &(data ) [ temp ] ) ;
17 }
18 }

like SSE or Intel AVX. We test our framework on machines that support Intel AVX2 or Intel
AVX-512 allowing to process (XOR) operations on 256 or 512 bits, respectively. Especially,
line 5 of Listing 5.4 is optimized s.t. it is processed with the Intel AVX instruction set.

In the not yet discussed line 12 in Listing 5.4 we indicate the parallelization of our fastxor
algorithm. By doing this, we use OpenMP (Open Multi-Processing) that allows shared memory
programming on systems having multiple processors and / or processor cores. OpenMP is
specialized for parallelizing loops that perfectly fits in our application.

OpenMP distributes the work that has to be done in the for loop shown in lines 4, 12, and 15
in Listing 5.4 over multiple threads depending on the underlying system. In line 12, we
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define the offset variable as shared variable over all the threads, i.e., it is well-defined in each
thread. The critical keyword in line 15 forces that line 16 is executed by only one thread in
parallel since the dest variable would get overwritten in the xorFullBlocks function. In line 4
the SIMD instructions à la Intel AVX are included in the loop. To avoid writing conflicts when
multiple threads access the dest variable, we use the reduction keyword in line 4 that ensures
that XOR operations on the dest variable are only allowed by one thread in parallel.

Pipeline. As transmitting queries takes some time, we implement a pipelining approach,
where a server does not wait until the query is completely transmitted, rather directly starts
to compute the answer when enough data is available (each byte of the query can be directly
processed without knowledge of the remaining query). So, we move a part of the XOR
operations to the communication phase and continue with the remaining groups with the
code shown in Listing 5.4. As this pipelining approach is quite complex, we do not include
the SIMD and parallelization optimizations.

We realize this pipelining technique with an asynchronous receiving operation, where the data
is written into a buffer and the program does not wait until the receiving process terminates
(as synchronous receiving would do). In a separate thread, we continuously observe if enough
data for the next XOR operations is already written into the buffer and process the part of
the query when this is the case. When the receiving process terminates, we interrupt our
pipeline and run the fastxor function from Listing 5.4 for the not yet processed sub-query.
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In this chapter, we evaluate our implementation from Chapt. 5. We define our system setup
in Sect. 6.1. In Sect. 6.2.1 we evaluate the query-dependent preprocessing RAID-PIR scheme
described in Sect. 3.3.2. At last, we evaluate the Private Information Retrieval (PIR) part
of our Compromised Credential Checking (C3) protocol (see Sect. 4.3) in Sect. 6.3 to show
practicability of C3 in combination with PIR.

6.1 Setup

In this section, we give details about the machines we use for performing our benchmarks.
For the RAID-PIR benchmarks in Sect. 6.2 we use a client and servers that are running
Arch Linux and have a 16 Core Intel Core i9-7960X processor and 128 GB DDR4 RAM. The
processor allows to use up to AVX-512 instructions that we use for our RAID-PIR benchmarks
in Sect. 6.2.

For a more realistic C3 scenario we deploy two servers as x1e.32xlarge instances on Amazon
EC2 located in Europe and Virginia. The x1e.32xlarge instance is powered by four Intel Xeon
E7 8880 v3 processors and has 3904 GB RAM that suffices to load our whole database. The
processors support AVX2 that we use for our C3 benchmarks in Sect. 6.3.

6.2 RAID-PIR Benchmarks

In this section, we benchmark our query-dependent preprocessing RAID-PIR scheme
from Sect. 3.3.2. In Sect. 6.2.1 we run experiments for generating the database. Thereafter,
we compare the online time and communication of our implementation in Sect. 6.2.2. Finally,
we test the robustness in Sect. 6.2.3 and conclude that our implementation can only handle
floods for a small time period.

6.2.1 Generating the Database

In this section, we evaluate the database generation. This includes the generation of the
database itself, the preprocessing to map the database into a larger preprocessing database,
and a comparison between the sizes of the two databases.
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Number of Entries N Generate Random Bits (ms) Quicksort (ms)
100 000 584 956

1 000 000 5 271 9 535
10 000 000 52 288 105 973
50 000 000 260 708 535 622

Table 6.1: Times in ms needed for generating a random database and sorting it using the
Quicksort algorithm. The database consists N entries of size 32 bytes each. We
note that the blocksize b is independent from the database generation and thus
has not to be defined yet.

Number of
Entries N

Preprocessing (ms)
b = 1000 bytes b = 5000 bytes b = 10000 bytes

100 000 405 386 383
1 000 000 3 383 3 356 3 358

10 000 000 33 732 33 505 33 610
50 000 000 171 838 172 316 170 991

Table 6.2: Times in ms for preprocessing using the method of four Russians [ADKF70] with
varying blocksizes b bytes.

Database Generation Tab. 6.1. Firstly, we evaluate the times needed for generating the
databases without any preprocessing. We generate four databases that consists of N entries
where each entry represents a hash value consisting of 32 bytes. For our C3 application, we
need to sort the database and thus we also show the times needed for sorting separately. The
total running time is the sum of the times needed for generating random bits and sorting
them with our Quicksort implementation. The results are given in Tab. 6.1. We see a linear
dependence on the number of entries and the time needed for generating random bits and
sorting.

Preprocessing Tab. 6.2. We now measure the times for the preprocessing using the method
of four Russians [ADKF70] as described in Sect. 3.2.2. For our further experiments, we
choose a constant groupsize of t = 8 and different block sizes b that also influences the
precomputed memory Pi of server i. Our results are depicted in Tab. 6.2. We see that the
preprocessing time is independent from the blocksize b, what we expected, since the amount
of work is independent of the blocksize - only the number of groups differ. As for the database
generation, we see a linear dependency on the number of entries and the time.

Database sizes Tab. 6.3. At last, we look at the sizes of the databases and the corresponding
precomputed databases. The results are shown in Tab. 6.3. It is obvious, that the size of the
databases are again linear in the number of database entries. The size of the precomputed
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Number of Entries N Database Size (MB) Preprocessing Database Size (MB)
100 000 3.2 102.4

1 000 000 32.0 1 024.0
10 000 000 320.0 10 240.0
50 000 000 1 600.0 51 200.0

Table 6.3: Sizes of the randomly generated database and the corresponding preprocessing
database for various number of database entries with blocksize b = 1000 bytes
and groupsize t = 8.

database is independent of the blocksize, what can be easily shown as follows: Assume a
database of size |D| with blocksize b and a groupsize of t. We have to assign the B = |D|/b
blocks to groups of size t, i.e., we have |D|/(bt) groups. For each group we have to store 2t

values of b bytes, s.t. we have to store |D|/(bt) ·2t · b = 2t · |D|/t bytes, which is independent
of the blocksize b. We also see that the database size in our implementation exactly matches
with the theoretical 2t · |D|/t bytes.

6.2.2 Query and Response

Here, we look at the online time of our RAID-PIR protocol. This includes sending the seeds
to the client, receiving the queries from the client, computing the answers, sending these to
the client, and finally combining them to the desired block. We run the experiments on a
LAN and a WAN setting with n= 2 and n− 3 servers.

The majority of the execution time is spent on the huge number of XOR operations. In Sect. 3.5,
we showed that each server has to process kb/t XOR operations. By setting k = |D|/n
and |D| = B/b, we achieve a complexity of |D|/(nt) XOR operations and thus the number of
XOR operations is independent of the blocksize b. Only the communication depends on the
blocksize b. We showed in Sect. 3.4 that our RAID-PIR protocol has the best communication
complexity C(b) at a blocksize of b =

p

|D|/n with |D| = 32N when each entry in the database
is a 32 byte hash value. So, we test for each database with three different blocksizes, one
that theoretically leads to the best communication, a smaller and a bigger one.

We summarize the upload and download times in our measurements. As described
in Sect. 3.3.1, the client uploads a κ = 128 bit seed and the queries, while the download only
consists of one block of size b for each server.

We wait until the queue for (seed, value)-pairs is full. For the experiments with 3 running
servers we choose the redundancy parameter r = 2, i.e., each server has to process two
chunks - one online and one offline.

We give the online computation time for our implementation of the RAID-PIR scheme [DHS14;
DHS17] and the query-dependent preprocessing (QDP) RAID-PIR scheme. We do not provide
a correct implementation of the original RAID-PIR scheme, rather adapt the query size and
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Entries N
Blocksize b
(bytes)

Comm.
(ms)

Computation (ms) Up
(kB)

Down
(kB)RAID-PIR QDP RAID-PIR

100 000
800 2 13 8 4.00 1.66

1 265 2 13 9 2.53 2.59
2 000 3 13 8 1.60 4.06

1 000 000
1 000 6 38 24 32.00 2.06
4 000 3 40 23 8.00 8.06

10 000 7 42 27 3.20 20.06

10 000 000
8 000 11 276 173 40.00 16.06

12 650 6 273 174 25.30 25.36
20 000 9 273 177 16.00 40.06

50 000 000
10 000 16 853 512 160.00 20.06
28 285 14 846 517 56.57 56.63
40 000 16 852 524 40.00 80.06

Table 6.4: Online phase LAN benchmarks for n = 2 servers and redundancy parameter r = 2.

the necessary number of XOR operations since this takes the main runtime. For a realistic
comparison, we do not need to implement the correct scheme. Note, that we only measure
the communication time for the QDP RAID-PIR scheme since the amount of data is equal for
both schemes and thus we expect similar results.

The benchmarks for the 1Gbit LAN setting are depicted in Tab. 6.4 for n = 2 servers and
in Tab. 6.5 for n = 3 servers. The benchmarks for the WAN setting are given in Tab. 6.6
for n= 2 servers and in Tab. 6.7 for n= 3 servers. We see that the computation time does
not grow linearly although the number of XOR operations grows linearly. The reason is the
synchronization overhead of the parallelism. OpenMP needs some time to synchronize the
threads and thus the parallel execution is more effective for larger databases.

We can also see that the computation time for the larger databases in the WAN setting is
substantially smaller than for the LAN setting with the same inputs. The reason for this is
that we use a pipelining approach where the servers do not wait until the query is completely
transmitted rather directly start the computation of the answer when enough data is available,
i.e., some computation time moves to the communication time as described in Sect. 5.2. So,
we see that the total runtime (communication and computation) for the WAN setting is only
slightly worse.

We see a significant improvement of the computation time of our QDP RAID-PIR scheme
compared to the original RAID-PIR scheme [DHS14; DHS17]. For n= 2 servers, we achieve
improvements up to 40% (see, e.g., the three rows for N = 50 million database entries
in Tab. 6.4), and for n = 3 servers, the improvement is up to 66% (see, e.g., the last row
of Tab. 6.5).

The amount of upload and download data is measured and matches to the theoretical formulas
given in Sect. 3.5. We see that we have the best communication by choosing the optimal
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Entries N
Blocksize b
(bytes)

Comm.
(ms)

Computation (ms) Up
(kB)

Down
(kB)RAID-PIR QDP RAID-PIR

100 000
800 2 6 2 4.00 2.50

1 033 2 6 3 3.10 3.16
2 000 2 6 2 1.60 6.10

1 000 000
1 000 5 69 24 32.00 3.10
3 265 4 72 26 9.80 9.89

10 000 5 71 21 3.20 30.10

10 000 000
8 000 11 376 127 40.00 24.10

10 372 8 381 132 30.85 31.21
20 000 10 385 128 16.00 60.10

50 000 000
10 000 16 1 303 438 160.00 30.10
23 095 14 1 287 425 69.28 69.38
40 000 17 1 308 431 40.00 120.10

Table 6.5: Online phase LAN benchmarks for n = 3 servers and redundancy parameter r = 2.

Entries N
Blocksize b
(bytes)

Comm.
(ms)

Computation (ms) Up
(kB)

Down
(kB)RAID-PIR QDP RAID-PIR

100 000
800 15 12 9 4.00 1.66

1 265 13 12 8 2.53 2.59
2 000 14 11 11 1.60 4.06

1 000 000
1 000 28 61 38 32.00 2.06
4 000 26 64 34 8.00 8.06

10 000 29 63 36 3.20 20.06

10 000 000
8 000 99 185 90 40.00 16.06

12 650 89 182 89 25.30 25.36
20 000 97 185 90 16.00 40.06

50 000 000
10 000 197 651 412 160.00 20.06
28 285 189 638 389 56.57 56.63
40 000 196 644 403 40.00 80.06

Table 6.6: Online phase WAN benchmarks for n = 2 servers and redundancy parameter r = 2.
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Entries N
Blocksize b
(bytes)

Comm.
(ms)

Computation (ms) Up
(kB)

Down
(kB)RAID-PIR QDP RAID-PIR

100 000
800 8 16 6 4.00 2.50

1 033 7 16 6 3.10 3.16
2 000 8 16 6 1.60 6.10

1 000 000
1 000 21 58 23 32.00 3.10
3 265 19 56 19 9.80 9.89

10 000 22 58 19 3.20 30.10

10 000 000
8 000 64 324 83 40.00 24.10

10 372 61 313 82 30.85 31.21
20 000 63 318 86 16.00 60.10

50 000 000
10 000 201 1 170 293 160.00 30.10
23 095 182 1 146 283 69.28 69.38
40 000 202 1 186 287 40.00 120.10

Table 6.7: Online phase WAN benchmarks for n = 3 servers and redundancy parameter r = 2.

blocksize
p

32N/n, where the amount of upload and download data is almost equal. In every
case, the communication time is the best for the optimal blocksize, while the computation
time is not much affected.

6.2.3 Robustness

In this section, we look at the robustness of our scheme, i.e., how many queries our imple-
mentation can reliably handle. Therefore, we let three clients permanently send requests
every 500 ms (i.e., six requests in a second) and observe how many requests are currently
unanswered over five minutes. For this benchmark, we only test the WAN setting as this
one is more realistic in a real world deployment. Furthermore, we choose the optimal block-
size b =
p

32N/n for a given number of database entries N . We choose n = 2 PIR server and
test all three pause conditions as described in Sect. 5.1. For this setup, we assume a queue
capacity of 500 (seed, value)-pairs and start the experiments with a full queue. The results
are shown in Fig. 6.1.

We observe that our implementation is not robust against a flood of requests for a long
time. Let ALWAYS, NEVER and HALF are the pause conditions as shown in Tab. 5.1 on
page 37. The pause conditions ALWAYS and HALF for the smaller database can handle the
flood reliably for 1.5 minutes and 0.75 minutes, respectively. However, the ALWAYS pause
condition becomes very inefficient after the (seed, value)-pair queue is empty. The NEVER
pause condition has a constant rate but cannot handle high floods even over a short time
period. In most scenarios, the HALF pause condition is the best choice since it allows high
floods for a short time period while it still has the same rate as the NEVER pause condition
afterwards.
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Figure 6.1: Robustness benchmarks: the black line gives the number of so far sent queries
while the other lines give the number of queries that are not yet processed, i.e.,
the lower the lines the better the performance. ALWAYS (blue) describes the
configuration to pause the preprocessing process when an answer is computed,
NEVER (red) never pauses the process and HALF (green) only pauses the process
if the (seed, value)-pair queue is less than half full. The experiments are measured
for databases with N = 10 000 000 (unfilled markers) and N = 50 000 000 (filled
markers) entries. We start each experiment with a full queue of 500 (seed,
value)-pairs.
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6.3 Benchmarks for the PIR Part of our C3 Protocol

In this section, we deploy the PIR part of our C3 protocol described in Sect. 4.3 on n = 2
Amazon EC2 server instances to simulate a real-world scenario. As client, we choose a
laptop with 32 GB DDR4 memory and an 8-Core Intel i9 CPU with 2,4 GHz. For this use
case, we generate a random database with two billion entries, that almost covers the data
breaches Collection 1 - 5 [Gre19]. Since hash values are distributed uniformly at random
and thus their blinded value also does (otherwise the hash function would not be collision-
resistant), a random database simulates a real-world data breach perfectly. To shorten our
database, we compress the database with the compression function used in [TLP+17] and
explained in Sect. 4.3.

For a database with N = 2000000000 entries, we have an optimal blocksize of b̂ =
p

32N/2 ≈ 178885 bytes. As shown in Sect. 4.3, the optimal prefix parameter is z =
log256(b̂n) ≈ 2.3. Since we achieve a better compression for a small prefix parameter, we
choose z = 2, s.t. each block has the same 2 byte prefix and thus, we would leak the same
information as Google Password Checkup (GPC) [TPY+19] if our PIR protocol is broken, e.g.,
if the servers collude.

In our randomly generated database, the maximum number of entries with the same prefix
is 31152, which yields roughly 40 million dummy entries in the database, since we have to
fill each block, that has less than 31 152 entries, with dummies. Without any compression,
we achieve the blocksize b = 32 · 31152 = 996000 bytes. After our compression, we
get a blocksize of b = 880837 bytes, which results in a database of 57.7 GB, while the
uncompressed database was 65, 3 GB, so we achieve a compression by ≈ 12%.

RuntimeandCommunication. We run the PIR part of our C3 protocol on two x1e.32xlarge
instances, both located in Frankfurt. The client is located in Darmstadt, roughly 27 km direct
distance (air-line distance) away. The connections between the client and the servers has a
latency of 10 ms. Server 0 and Server 1 need 118 minutes and 135 minutes to generate the
database including preprocessing, respectively. Both servers need around 14,6 minutes to
compute 100 (seed, value)-pairs for the query-dependent preprocessing queue. We start the
experiments with a full queue.

We measure the online phase by letting a client retrieve a single block and repeat this ten
times. On average, the client waits ≈ 13 seconds until it receives the desired block, from
which ≈ 9 seconds are spent on the XOR operations. So, the client has to wait approxi-
mately 4.5 seconds longer than in Thomas et al’s GPC protocol [TPY+19]. However, the
measurements from our protocol only includes the PIR part. For our whole C3 protocol, the
client has to additionally run a Private Set Intersection (PSI). Fortunately, the server’s PSI set
consists of only 31 152 entries, so we expect a small overhead for the PSI part.

The total communication is 1,8 MB of which 1,7 MB is the size of the downloaded block.
Note that for an optimal blocksize b̂, the upload and download is almost equal. However,

48



6 Evaluation

since our C3 protocol requires that the blockindex is equal to the prefix of each entries in a
block, we cannot choose any blocksize. Another obstacle is the compression, which makes it
hard to predict a blocksize.
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7 Conclusion

Summary. Compromised Credential Checking (C3) protocols like HaveIBeen-
Pwned (HIBP) [Hun19] and Google Password Checkup (GPC) [TPY+19] allow users
to check if their credentials are leaked in a data breach. However, all of these protocols leak a
prefix of the hashed credentials, which is enough information to exploit a credential stuffing
attack [LPA+19]. In this thesis, we circumvent the prefix leakage problem by providing a C3
protocol that is based on multi-server Private Information Retrieval (PIR) [CGKS95]. Since
PIR hides the index of the data block to retrieve, there is no information revealed to the
servers. So, we developed the first C3 protocol that fulfills perfect user anonymity and has a
two server PIR runtime of roughly 12 seconds for a database with 2 billion entries, which is
nearly the size of the well-known data breaches Collection 1-5 [Gre19].

We achieved this acceptable runtime by developing the new query-dependent preprocessing
PIR model, that moves at least half of the online work (depending on the number of servers)
to an offline phase at the cost of a half more round trip time. We implemented this feature in
the RAID-PIR scheme [DHS14; DHS17] and provide our new query-dependent preprocessing
RAID-PIR C++ framework. Additionally, we compressed each block of the PIR database
to reduce the amount of data to store and to transmit, and generalized this approach to
Compressible PIR.

Future Work. We provide an implementation of our new query-dependent preprocessing
RAID-PIR scheme, but not yet an implementation of our full C3 protocol. To measure more
realistic times for our whole C3 protocol, one could extend our PIR framework with the
remaining steps of our C3 protocol. This includes the determination of the block index and
the Private Set Intersection (PSI) protocol.

A drawback of multi-server PIR is that it requires multiple non-colluding servers that might be
hard to realize in practice [TPY+19; LPA+19]. An interesting research direction is to develop
techniques that prevent malicious servers to collude. Secret Sharing [Sha79] faces the same
problem, where a secret is distributed over multiple parties and only a subset of the parties
may collude. The PIR query can be considered as secret and is shared between the servers.
An interesting approach can be the usage of Intel SGX, where the server computes the answer
in an Intel SGX enclave and the client communicates directly with the enclave over a secure
channel. Tamrakar et al. [TLP+17] use a similar approach for their private membership test
scheme.
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