
Master Thesis

Private Function Evaluation
for Multi-Input Gates

Arthur Wigandt
October 15, 2021

Cryptography and Privacy Engineering Group
Department of Computer Science
Technische Universität Darmstadt

Supervisors: M.Sc. Daniel Günther
Prof. Dr. Yann Disser

Prof. Dr.-Ing. Thomas Schneider

Erklärung zur Abschlussarbeit
gemäß §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Arthur Wigandt, die vorliegende Master Thesis ohne Hilfe Dritter und
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Täuschungsversuch vorliegt,
der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht
wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung überein.

Thesis Statement
pursuant to §23 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I, Arthur Wigandt, have written the submitted Master Thesis
independently. I did not use any outside support except for the quoted literature and other
sources mentioned in the paper. I clearly marked and separately listed all of the literature
and all of the other sources which I employed when producing this academic work, either
literally or in content. This thesis has not been handed in or published before in the same or
similar form.

I am aware, that in case of an attempt at deception based on plagiarism (§38 Abs. 2 APB),
the thesis would be graded with 5,0 and counted as one failed examination attempt. The
thesis may only be repeated once.

In the submitted thesis the written copies and the electronic version for archiving are identical
in content.

Darmstadt, October 15, 2021

Arthur Wigandt

Abstract

Private Function Evaluation (PFE) allows two parties to compute a Boolean function, where
one party holds the function and one party holds the input, while keeping the input and
function private. Only the output of the function shall be revealed. PFE can be reduced to
Secure Two-Party Computation (STPC) by evaluating a Universal Circuit (UC), which is a
Boolean circuit that can be programmed to compute any other circuit up to a given size as a
public function with an STPC protocol like Yao’s garbled circuits (FOCS’86) or the Goldreich-
Micali-Wigderson protocol (STOC’87). Most UC implementations are restricted to binary
gates and based on Edge-Universal Graphs (EUGs). In this thesis, we extend UCs to support
gates with arbitrary many inputs via a black-box reduction from EUGs. Then, we implement
the state-of-the-art UC of Liu et al. (CRYPTO’21) and the original UC of Valiant (STOC’76) and
extend both to support multi-input gates. Furthermore, we compare our new construction
with the original idea of Valiant to allow higher input gates by merging sufficiently many
EUGs. However, this leads to a linear UC size increase in the maximum supported gate input
size. Our multi-input gate construction circumvents this problem by specifying the maximum
number of inputs per gate. This is a trade-off between efficiency and privacy since our
approach leaks more information than standard PFE schemes. We show that both multi-input
constructions always reduce the UC size compared to the standard binary construction.

Acknowledgments

Before we begin with the actual thesis, I would like to thank Prof. Dr. Thomas Schneider and
Daniel Günther for providing this interesting topic, their excellent support, and their valuable
feedback. My thanks goes to Prof. Dr. Yann Disser, who made this interdisciplinary thesis
between computer science and mathematics possible. Furthermore, I am also very much
obliged to Hossein Yalame, who supported me with synthesizing the Boolean circuits used
for the benchmarks.

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Graph Theory . 4
2.2 Edge-Universal Graphs . 7
2.3 Using Edge-Universal Graphs for Private Function Evaluation 9

3 Edge-Universal Graph Constructions 13
3.1 Valiant’s Edge-Universal Graph Construction . 13
3.2 Liu et al.’s Edge-Universal Graph Construction 24

3.2.1 The Weak Version . 24
3.2.2 The Optimized Version . 30

4 Support for Multi-Input Gates 35
4.1 The Fixed Edge-Universal Graph Construction of [Val76][SS08, §4.3] 35
4.2 Our Dynamic Edge-Universal Graph Construction 36
4.3 Transforming a Multi-Input Edge-Universal Graph into a Universal Circuit . . 40

5 Implementation & Experimental Evaluation 43
5.1 About The Implementation . 43
5.2 Test Setup and Methodology . 45
5.3 Universal Circuit Sizes . 48
5.4 An Improvement Attempt: The Hybrid Construction 56

6 Conclusion 63

List of Figures 64

List of Tables 68

List of Abbreviations 69

Bibliography 70

A Appendix 73
A.1 Benchmarks with Valiant’s EUG Construction . 73
A.2 Compilation Times . 75

I

1 Introduction

Assume two parties A and B want to jointly evaluate a Boolean function f on input x , where
party A possesses the function f and party B provides the input x . The goal is that both
parties learn the output of the function f (x) while keeping the input and function private.
This task is called Private Function Evaluation (PFE) and can be achieved by constructing
so-called Universal Circuits (UCs). On a high level, a UC is a Boolean circuit which allows to
compute any Boolean circuit up to a given size by specifying so-called programming bits.

We can reduce PFE to Secure Two-Party Computation (STPC) [SYY99; Pin02; KS08a] by
evaluating these UCs with an STPC protocol like Yao’s garbled circuits [Yao86] or the Goldreich-
Micali-Wigderson protocol [GMW87]. These protocols allow to evaluate a public Boolean
function, represented as a Boolean circuit, privately, e.g., the inputs of each party remain
secret, and only the output of the function is given. Using the programming bits of the UC as
the private input of party A and the actual input of party B as his input, we can compute f (x)
while keeping the function f and input x secret. This approach directly leads to the challenge
of constructing UCs of minimum size. The idea of UCs was originally introduced in [Val76]
by Valiant, who also provided an asymptotically optimal construction with size Θ(n log n),
where n is the number of inputs, gates, and outputs. He used methods from graph theory and
defined so-called Edge-Universal Graphs (EUGs), which build the core of the UC construction.
Valiant provided two constructions that both depend on the same recursive structure with
sizes ∼ 5n log2 n for the 2-Way construction and ∼ 4.75n log2 n for the 4-Way construction.

Using standard Universal Circuits for binary gates, a multi-input gate circuit must first
be converted into a circuit with binary gates. In general, this transformation results in
exponentially more gates [Weg87, Theorem 2.1].

The first UCs for multi-input gates were given in [SS08] (cf. Related Work). Also, Valiant
proposed an idea for circuits with higher gate input sizes by merging sufficiently many
EUGs. However, this approach allows all gates to have this many inputs. In particular,
Valiant’s construction grows linearly in the number of the maximum supported gate input size.
This can result in a massive overhead as we will demonstrate. In this thesis, we present a
construction that does not grow linearly with the maximum gate input size. Our construction
is based on the construction algorithms for standard EUGs and uses them in a black-box
manner. Therefore, each improvement in the size of EUGs also improves our construction.
We pre- and post-process the circuits to be embedded and use standard EUG constructions
as a black box. In our construction, we have to decide how many inputs each gate should
support. This information, in addition to the number of inputs, gates, and outputs, is leaked.
Therefore, we can only guarantee the anonymity of the circuit up to these restrictions. Thus,

1

1 Introduction

our construction is a trade-off between efficiency and privacy, and it can also be seen as a
Semi-Private Function Evaluation (SPFE) construction. SPFE, as proposed in [PSS09], is
similar to PFE with the difference that the anonymity of the function f is only guaranteed
within a class of functions F , i.e., the information f ∈ F is leaked, but the concrete function
stays private. The concrete anonymity set of our construction is defined in Section 4.2. A
typical use case for SPFE are functions that can be split into a private and a public part. For
example, Günther et al. showed in [GKSS19] how a car insurance tariff can be computed
privately. A general framework for SPFE with concrete applications is given in [PSS09].

Applications of PFE

Private Function Evaluation can be used in situations, where the input contains sensible data
and the function contains information like internal business data, knowledge, or research
results. A direct example for this is privacy-preserving credit checking [FAZ05], where the
concrete financial situation of the loanee can be kept private, while the loaner can make sure
that their credit-granting policies are enforced and kept secret. In [OI07], it was shown how
PFE can be used to privately search for information (e.g., keywords or their combinations)
on streaming data without revealing the search criteria. PFE can also be used for privacy-
preserving remote diagnostics as shown in [BPSW07; BFK+09], where the diagnostics routine,
represented by a binary decision tree or a linear branching program, as well as the user’s
information is kept secret. In [SS08], Sadeghi and Schneider used their multi-input gate UC
construction to securely evaluate Neural Networks. Further applications of PFE are private
queries in database management systems [PKV+14; FVK+15] or privacy-preserving intrusion
detection systems [MS13; NSMS14].

RelatedWork

The first UC constructions for multi-input gates were presented in [SS08] by Sadeghi and
Schneider. They proposed three different constructions. The first one is an iterative construc-
tion that uses Choice Blocks which select the desired input wires to the multi-input gates
out of the circuit inputs and previous gate outputs. Sadeghi and Schneider also proposed
three possible constructions for instantiating a Choice Block. Using their proposed sub-linear
Choice Block, their construction has size O(log d k2), where k is the number of gates and d
the maximum gate input size. To keep the notation compact, we refrain from giving the
complexity also for the number of inputs and outputs since they are, in general, much smaller
than k. The second UC construction with size O(dk log2 k) is a generalization of the modular
UC of [KS08a]. The third proposed UC construction in [SS08, §4.3] is a generalization of
Valiant’s original construction [Val76]. It has the asymptotic optimal size of O(dn log n). All
gates in above constructions support up to d inputs. Therefore, they do not leak the concrete
gate sizes, in contrast to our construction.

There were several improvements to the original UC constructions of Valiant [KS16; LMS16;
GKS17; ZYZL19; AGKS20]. The best known construction using Valiant’s framework was given
in [ZYZL19] with size ∼ 4.5n log2 n. This construction was further improved in [AGKS20]
using only O(n) memory during the UC compilation. Recently, a new even more efficient

2

1 Introduction

construction, deviating more from the original idea of [Val76], was proposed in [LYZ+21]
and reduced the size to ∼ 3n log2 n. Most notably, this goes beyond the lower bound of ∼
3.64n log2 n [ZYZL19] that holds for constructions using Valiant’s framework. In [KS08a],
Kolesnikov and Schneider proposed a modular UC construction of size ∼ 1.5k log2

2 k which is
more efficient than Valiant’s construction for small circuit sizes.

Mohassel and Sadeghian proposed two PFE schemes in [MS13]. The first scheme uses ho-
momorphic encryption and has linear complexity, while the second scheme uses Oblivious
Switching Networks and can be realized by mainly symmetric cryptography. This construction
has a complexity of O(n log n). In [BBKL19], Bingöl et al. further improved the commu-
nication effort of the latter construction by 40% using the half gates garbling technique
of [ZRE15].

Katz and Malka showed in [KM11] that PFE can also be realized in linear complexity at
the cost of using homomorphic encryption. In [MSS14], Mohassel and Sadeghian extended
their protocol of [MS13] such that it is secure against active adversaries while retaining the
linear complexity. In [BBK18], Biçer et al. proposed a PFE scheme based on homomorphic
encryption with a reusability feature. The scheme is split into an initial execution and a
resumption protocol for subsequent evaluations of the function, where the latter can reuse
tokens of the initial execution to be more efficient. Recently, in [HKRS20], Holz et al. showed
the practicality of homomorphic encryption based PFE schemes by improving the protocol of
Katz and Malka [KM11] and using state-of-the-art homomorphic encryption schemes.

Felsen et al. showed in [FKSW19] that PFE can be realized very efficiently by using a Trusted
Execution Environment (TEE).

Our Contributions

We provide a rigorous mathematical framework to analyze and prove the correctness of
Valiant’s EUG construction [Val76] and the-state-of-the-art EUG construction of [LYZ+21]
(Chapter 3).

Then, we describe our multi-input gate construction, which is not growing linearly with
the maximum gate input size, and prove its correctness (Chapter 4). To the best of our
knowledge, there is no practical implementation of the state-of-the-art scheme of [LYZ+21] as
their implementation only verifies correctness and size of the construction (cf. [LYZ+21, §4.2]).
We provide the first practical implementation of Universal Circuits using the construction of
Liu et al. [LYZ+21] and extend it with our multi-input gate construction and the (generalized)
Valiant’s multi-input gate construction of [Val76][SS08, §4.3]. We also implement a hybrid
construction, which is a mix of our construction and Valiant’s generalized multi-input gate
construction (Section 5.4).

Last but not least, we compare the different multi-input gate constructions with the standard
binary construction (Chapter 5). We show that all three multi-input constructions yield
smaller UCs than the standard binary construction.

3

2 Preliminaries

In this chapter, we cover the needed graph theoretic results (Section 2.1), introduce the
concept of an Edge-Universal Graph (Section 2.2), and show how we can use EUGs to enable
Private Function Evaluation (Section 2.3).

We consider directed graphs G = (V, E) throughout the rest of this work, if not explicitly
stated otherwise, with V being the set of vertices and E being the set (or possibly multi set)
of edges. N denotes the set {1, 2, ...}. [k] denotes the set {1, 2, ..., k} for k ∈ N.

2.1 Graph Theory

Definition 1 (Basic Definitions). Let G = (V, E) be a directed graph and v ∈ V .

• δ+G(v) denotes the set of all incoming edges to v, i.e., δ+G(v) := {(u, v) ∈ E : u ∈ V}. For
U ⊂ V , we define δ+G(U) := {(u, v) ∈ E : u ∈ V \U , v ∈ U}. δ−G(v) and δ−G(U) are defined
analogously for outgoing edges.

• Γ+G (v) denotes the set of incoming neighbors of v and is defined by Γ+G (v) := {u ∈ V :
(u, v) ∈ E}. For U ⊂ V , we define Γ+G (U) :=

⋃︁

u∈U
Γ+G (u) \ U. The sets Γ−G (v) and Γ−G (U) are

defined analogously for neighbors connected by an outgoing edge.

• The indegree (resp. outdegree) of v is defined by deg+G(v) := |δ+G(v)| (resp. deg−G(v) :=
|δ−G(v)|). G has fanin ρ if deg+G(v)≤ ρ ∀ v ∈ V . G has fanout ρ if δ−G(v)≤ ρ ∀ v ∈ V .

• For U ⊂ V , G[U] := {U , {e = (u, v) ∈ E : u, v ∈ U}} denotes the subgraph induced by U.

For undirected graphs G = (V, E), we define δG(v) := {e = {u, v} ∈ E : u ∈ V} for v ∈ V
and G[U] := {U , {e = {u, v} ∈ E : u, v ∈ U}} for U ⊂ V . Because we often have to deal with
multiple graphs in the remaining work, we will also say v ∈ G (resp. e ∈ G) instead of v ∈ V
(resp. e ∈ E) for G = (V, E). If the graph G is clear from the context, we use above notations
without the index G, e.g., we write δ instead of δG .

Definition 2 (Topological order). Let G = (V, E) be a directed acyclic graph. A topological
order for G is a map ηG : V → {1, ..., |V |} such that ∀ (u, v) ∈ E : ηG(u)< ηG(v).

4

2 Preliminaries

Note that the topological order of a graph is, in general, not unique. However, we will waive
the specification of the concrete topological order to keep the notation simple and always
assume a fixed ηG for each graph G.

Definition 3 (Γρ(n)). The set Γρ(n) denotes all directed acyclic graphs with at most n vertices
and fanin/fanout ρ for ρ, n ∈ N.

Definition 4 (Edge coloring). An edge coloring of an undirected graph G = (V, E) is a map
c : E → [k] for k ∈ N with the property c(e) ̸= c(e′) ∀ e, e′ ∈ δ(v) with e ̸= e′ ∀ v ∈ V . A
minimum edge coloring is an edge coloring with the smallest k. This k is called the chromatic
number of G and denoted by χ(G).

On a high level, an edge coloring colors the edges of a graph such that all "neighboring" edges
(i.e., edges that are connected by a common vertex) have different colors.

Definition 5 (Bipartite graphs). An undirected graph G = (V, E) is called bipartite if there
are disjoint V ′, V ′′ ⊂ V such that V = V ′ ∪ V ′′, and there are no edges within V ′ or V ′′,
i.e., G[V ′] = (V ′,∅) and G[V ′′] = (V ′′,∅).

One important characterization of bipartite graphs is that they do not contain cycles of odd
length. A proof for this can be found in [Die10, Prop. 1.6.1].

Theorem 1 (Kőnig’s theorem ([Die10, Prop. 5.3.1])). The chromatic number of an undirected
bipartite graph equals the maximum degree of a vertex in this graph.

Proof (by [Die10, Prop. 5.3.1]). Let G = (V, E) be an undirected bipartite graph. Let ∆ be
the maximum degree of a vertex in G. Observe that χ(G)≥∆ since there is a vertex with ∆
adjacent edges that all need a different color. For the direction χ(G)≤∆, we use induction
on |E|.

Base case: |E|= 0
Then ∆= χ(G) = 0 because there is no edge to color.

Induction step: |E|= m+ 1

Choose an arbitrary edge e = (u, v) ∈ E and remove it. Let G̃ = (V, Ẽ) denote the resulting
graph. By induction hypothesis, we can find a ∆-coloring of G̃. Now consider the vertices u
and v of the removed edge. They have at most ∆− 1 neighbors in G̃, and therefore, u and v
have at least one color that is not used by an adjacent edge.

Case 1: There is a color that is not used by adjacent edges to u and v.
Then, we can color e with this color and obtain a ∆-coloring of G.

Case 2: There is no color that is not used by adjacent edges to u and v.
Then, we can choose a color β that is used by an adjacent edge ẽ to u but not by an adjacent

5

2 Preliminaries

edge to v and a color α that is not used by an adjacent edge to u. Now consider the longest
walk that starts with ẽ and continues with edges alternatingly colored to α and β . Such a
walk must be a path. Therefore, a longest walk must exist:

Note that every vertex on this path, except for the endpoints, must have adjacent edges with
colors α and β . If there was a cycle starting at one of those vertices on the path, either α
or β would be used twice for adjacent edges to this vertex. Also there is no cycle possible
that uses the starting point since by assumption the start vertex u has no α-colored edge.

We also know that this walk can not contain v because v has no adjacent β -colored edge and
would have to be on this walk by an (incoming) α-colored edge. Thus, the length of the path
until v would be even, and adding e to this path would introduce a cycle of odd length in a
bipartite graph, which is impossible.

Now we can swap the colors of each edge on this path. Because we chose the longest such
walk and u has no adjacent α-colored edge, this results in a valid coloring where u has
no β-colored adjacent edge. Now we can color e with β to get a ∆-coloring for G.

The constructive proof directly yields the following algorithm to find a minimum coloring:

Algorithm 1: EDGECOLORING(G)
Input : bipartite undirected graph G = (V, E)
Output : minimum edge coloring c

1 ∆←max
v∈V
{degG(v)}

2 foreach uncolored e = (u, v) ∈ E :
3 if ∃ i ∈ [∆] with c(ē) ̸= i ∀ ē ∈ δG(u)∪δG(v) :
4 c(e)← i

5 else
6 choose α,β and ē like in the proof
7 swap the colors of the longest β-α-alternating path starting with ē
8 c(e)← β

9 return c

Corollary 1. Algorithm 1 returns a minimum edge coloring for an undirected bipartite graph G =
(V, E) in time O(|V ||E|).

Proof. Correctness directly follows from Theorem 1. The maximum degree ∆ of a vertex in
G can be found in time O(|V |+ |E|) by Depth-First-Search. We can determine α, β , and ē, or
find a free color for each e = (u, v) in time O(|V |) by iterating through the adjacent edges
of u and v (each at most |V |), and then remove colors from the candidate set that are used
by any of these edges. If there is no color left, there is no free color, and we do the same
procedure with two candidate sets to find α and β . Each path in which the colors are possibly

6

2 Preliminaries

swapped has at most length |V |. Therefore, each iteration of the algorithm takes time O(|V |),
resulting in a total of O(|V ||E|) time for the whole algorithm.

At this point, we want to say that there are faster algorithms like [Alo03; COS01] than the
one derived from Kőnigs theorem. The fastest algorithm so far running in time O(|E| log∆)
was proposed in [COS01]. Next, we show how we can use an edge coloring to partition the
edge set of a graph with fanin/fanout ρ into ρ edge sets that can be embedded more easily
as we will see in Proposition 1.

Corollary 2 ([AGKS20, Theorem 1 & 2]). Let G = (V, E) ∈ Γρ(n). Then, there exists a (disjoint)
partition E1, E2, ..., Eρ of E such that Gi = (V, Ei) ∈ Γ1(n) ∀ i ∈ [k].

Proof (cf. [AGKS20, Theorem 1 & 2]). Construct a bipartite graph Ḡ = (V̄ , Ē) with

V̄ := V ∪ Ṽ := V ∪ {ṽ : v ∈ V},
Ē := {{u, ṽ} : (u, v) ∈ E}.

Since each v̄ ∈ V̄ has at most ρ neighbors, there exists a ρ-coloring of Ḡ by Kőnig’s theorem
(Theorem 1). Now construct an edge set

Ei := {(u, v) ∈ E : {u, ṽ} ∈ Ē with c({u, ṽ}) = i} for each color i ∈ [ρ].

Note that an undirected edge {u, ṽ} ∈ Ē corresponds to exactly one directed edge (u, v) ∈ E
since G is acyclic. Consider Ei for i ∈ [ρ] and let v ∈ V . By the coloring property, there is at
most one edge containing v and one edge containing ṽ colored with color i. Thus, there is at
most one incoming and one outgoing edge in Ei for each vertex v. Therefore, Gi ∈ Γ1(n).

2.2 Edge-Universal Graphs

Definition 6 (Edge-Embedding). Let G = (V, E, P) and G′ = (P, E′) be directed graphs with
P ⊂ V and G′ acyclic. An edge-embedding from G′ into G is a map ψ: E′ → PG, where PG
denotes the set of all paths in G with the following properties:

• ψ(e′) is a u-v-path (in G) for e′ = (u, v) ∈ E′,

• ψ(e′) and ψ(ẽ′) are edge-disjoint paths for all e′, ẽ′ ∈ E′ with e′ ̸= ẽ′.

Definition 7 (Edge-Universal Graph). A directed graph G = (V, E, P) with ordered pole set
P := {p1, ..., pn} ⊂ V is called an Edge-Universal Graph for Γρ(n) if:

• Every acyclic G′ = (P, E′) ∈ Γρ(n) that is order preserving, i.e., ∀ e = (pi , p j) ∈ E′⇒
i < j, can be edge-embedded into G.

We also write Uρ(n) for an EUG for Γρ(n).

7

2 Preliminaries

Note that there are some technical differences between our definition of an EUG and the
original definition of an EUG in [Val76, §2]. In our definition, only graphs that consist of the
pole set P of the EUG can be embedded. This together with the restriction to order preserving
graphs simplifies notation and improves the readability of the proofs. In the original definition
of an edge-embedding, there is an additional map ϕ : V ′→ P that maps the vertices of the
graph to be embedded to the poles of the EUG. The advantage of Valiant’s definition is that
the vertex set of the graph to be embedded must not be the pole set. However, since we are
using nested EUGs, we have to treat some of the nodes of the EUG as poles of its nested EUG
and solve the task of edge-embedding in this nested EUG. In particular, we will edge-embed
edges between those vertices in the nested EUG, and this requires us that this vertex is a
pole of the nested EUG. If we used a map ϕ like in the original definition, this would not be
guaranteed.

This is solely a technical requirement, and our modified definition has no practical restrictions:
Assume we want to edge-embed G′ = (V ′, E′) ∈ Γρ(n) with V ′ ̸= P. Then, we can easily

build a map ϕ : V ′→ P that maps the vertices of G′ to the poles of G such that G̃′ = (P, Ẽ′)
(with Ẽ′ := {(ϕ(u),ϕ(v)) : e = (u, v) ∈ E′}) is order preserving. To do that, sort the vertices
of G′ topologically (such that V ′ = {v′1, ..., v′m} for m≤ n). Then, set ϕ(v′i) = pi ∀ vi ∈ V . If
|V ′|< n, we can add dummy vertices to V ′ with no incoming or outgoing edges. Now, G̃′ can
be edge-embedded into G.

The other difference is that we do not require the EUG to be acyclic, although an EUG must
be acyclic to be transformed into a Universal Circuit. This relaxation of the definition allows
us to elegantly prove the correctness of the EUG construction by Liu et al. [LYZ+21], which
deviates from the original construction of Valiant [Val76].

We summarize the concrete EUG constructions by Valiant and Liu et al. in Section 3.1 and
Section 3.2. For now, assume that we have an EUG for Γ1(n). Then, we can easily construct
an EUG for Γρ(n) by merging ρ instances of our Γ1(n) EUG. This idea was originally given
in [Val76, Corollary 2.2].

Definition 8 (Merging of EUGs). Let G = (V, E, P) and Ḡ = (V̄ , Ē, P) be two EUGs for Γρ(n)
and Γρ̄(n) with the same same pole order and V ∩ V̄ = P. Then Ĝ = (V ∪ V̄ , E ∪ Ē, P) is called
the merging of G and Ḡ.

An illustration of the coloring, edge-embedding, and merging process is given in Figure 2.1.
Note that if E ∩ Ē ≠ ∅, the edge set of the merged EUG will be a multi set. For example, this
can happen if there is an edge from a pole to a pole.

Proposition 1. The merging of a Γρ(n) EUG and a Γρ̄(n) EUG is a Γρ+ρ̄(n) EUG.

Proof. Let Ĝ = (V̂ , Ê, P) be the merging of the Γρ(n) EUG G = (V, E, P) and the Γρ̄(n) EUG
Ḡ = (V̄ , Ē, P). Let G′ = (P, E′) ∈ Γρ+ρ̄(n) be the order preserving graph to be edge-embedded
into Ĝ. By Corollary 2, we can partition E′ into disjoint sets E∗1, E∗2, ..., E∗ρ+ρ̄ such that G∗i =

8

2 Preliminaries

p1

p2

p3

p4

(a) Γ2(4) graph

p1

p2

p3

p4

(b) U1(4)

p1

p2

p3

p4

(c) U1(4)

p1

p2

p3

p4

(d) merged U2(4)

Figure 2.1: (a) shows the Γ2(4) graph with already partitioned edge sets E1 and E2, (b) shows
the EUG in which the edge set E1 is embedded, (c) shows the EUG in which the
edge set E2 is embedded, (d) shows the merged EUG with all edges embedded.

(P, E∗i) ∈ Γ1(n) ∀ i ∈ [ρ + ρ̄]. Set E′1 =
ρ
⋃︁

i=1
E∗i and E′2 =

ρ+ρ̄
⋃︁

i=ρ+1
E∗i . Then, G′1 := (P, E′1) ∈ Γρ(n)

and G′2 := (P, E′2) ∈ Γρ̄(n). Now, G′1 and G′2 can be edge-embedded into G and Ḡ respectively.
Define ψĜ : E′→ PĜ as follows:

ψĜ(e
′) ↦→

¨

ψG(e′), if e′ ∈ E′1,

ψḠ(e
′), if e′ ∈ E′2.

Since E′ = E′1 ∪ E′2 and all edges in E′1 and E′2 were edge-embedded into G and Ḡ, each
edge (u, v) ∈ E′ is mapped to a u-v-path. Furthermore, these paths are edge disjoint because E
and Ē, in which E′1 and E′2 were edge-embedded, are disjoint.

Corollary 3 ([Val76, Corollary 2.2]). An EUG for Γρ(n) can be constructed by merging ρ EUGs
for Γ1(n).

Proof. Let G = (V, E, P) be a Γ1(n) EUG. Create ρ− 1 copies of G with the same pole set and
merge these graphs successively. Correctness follows directly by applying Proposition 1 ρ
times.

With this observation in mind, we can restrict ourselves on constructing Γ1(n) EUGs.

2.3 Using Edge-Universal Graphs for Private Function Evaluation

Now that we understand EUGs, we can come back to our main goal which was to enable PFE.
Recall that the setting was the following:

9

2 Preliminaries

Let Alice and Bob be two parties, where Alice holds a Boolean function f , Bob holds some
private information x , and Alice, Bob, or both, want to learn f (x) without revealing f or x
to the other party.
Note that we do not discuss the technical details about the underlying protocols or the
concrete security definitions as PFE via Universal Circuits is a standalone application for
STPC. We present the general and most common approach of reducing PFE to STPC [SYY99;
Pin02; KS08a; KS16]. The high level idea of the reduction is:

1. Alice creates a Boolean circuit representing the Boolean function f of size n with ni
inputs, ng gates, and no outputs.

2. Alice and/or Bob create a Universal Circuit of size ≥ n with at least ni inputs, ng gates,
and no outputs.

3. Alice creates a programming p f such that the UC computes f .

4. Bob and Alice evaluate the (public) Universal Circuit with private inputs p f and x using
an STPC protocol.

Universal Circuits

A Boolean Circuit can be seen as a directed acyclic graph whose vertices consist of Boolean
inputs, gates, or outputs. The number of inputs, gates, and outputs is denoted by ni ,ng and
no. A directed edge is also called a wire. A Boolean gate is a function z : {0,1}k → {0,1}
for k ∈ N. The inputs to this gate are the values of the incoming wires to the corresponding
node. The outgoing wires of a node have the value of the evaluated gate. Note that every
Boolean function with k inputs can be represented by a lookup table with 2k entries. We
further have distinguished nodes for inputs and outputs. However, we can always divide
a k-input gate into O(2k) binary gates. But in general, we can not avoid an exponential
increase of the number of gates by this transformation [Weg87, Theorem 2.1]. The two most
prominent minimization methods for Boolean formulas (resp. circuits) are given in [Qui52;
Kar53]. Since the EUG constructions that we use (cf. Sections 3.1 and 3.2) were made for
Γρ(n) graphs, we possibly need to reduce the outdegree of the gates. This can be done by
using so-called copy gates which just copy their inputs [Val76, Corollary 3.1].

Definition 9 (Universal Circuit ([Val76; AGKS20])). A Universal Circuit U for ni inputs,
ng gates, and no outputs is a Boolean circuit that can be programmed to compute any Boolean
circuit C with ni inputs, ng gates and no outputs by defining a set of programming bits p f such
that U(x , p f) = C(x) for all possible input values x ∈ {0,1}ni .

Note that a Universal Circuit can also compute circuits with less than the specified number of
inputs, gates, and outputs by using dummy inputs, gates, and outputs with no functionality.

10

2 Preliminaries

From Edge-Universal Graphs to Universal Circuits

Recall that the goal of the EUG constructions was to construct a Universal Circuit. Assume
that we have a merged EUG with the construction of Valiant [Val76] or Liu et al. [LYZ+21]
and a corresponding edge-embedding (cf. Definition 7). We are looking for a way to route
the output of one vertex to another vertex. Since we already have an edge-embedding that
yields a path, we can encode this path information in the programming bits for the Universal
Circuit. We will define three additional types of nodes:

• Y-Switch (cf. Figure 2.2a): A Y-Switch has two incoming wires and only outputs one
wire according to the programming bit. If the programming bit for this node is 0, the
output will be the right wire. If the programming bit is 1, the output will be the left
wire.

• X-Switch (cf. Figure 2.2b): An X-Switch has two incoming wires and two outgoing
wires. If the programming bit of this node is 0, the wires will be output in the same
order. If the programming bit is 1, the left input wire will be the right output wire and
vice-versa.

• Universal Gate (for 2 inputs): A Universal Gates for a (binary) pole has two input wires
and two output wires. For each Boolean gate, there are programming bits such that
this node computes the desired Boolean gate.

The concrete instantiation of the X- and Y-Switches as well as the Universal Gates for two inputs
with Boolean gates can be found in [Val76; KS08b]. The Universal Gate construction for more
than two inputs is described in Section 4.3. Using these node types (in addition to input/out-
put nodes), we can transform an EUG G = (V, E, P) into a UC as follows. For each node u ∈ V :

• u is an input node, i.e., deg+(u) = 0:

– Then u will also be an input node in the UC.

• u is an output node, i.e., deg−(u) = 0:

– Then u will also be an output node in the UC.

• u just forwards one wire and is no pole, i.e., deg+(u) = 1∧ deg−(u) = 2∧ u /∈ P:

– Then we replace u by two wires since u does not yield another path option.

• u has two inputs, one output, and is no pole, i.e., deg+(u) = 2∧ deg−(u) = 1∧ u /∈ P:

– Then u becomes a Y-Switch.

• u has two inputs, two outputs, and is no pole, i.e., deg+(u) = 2∧ deg−(u) = 2∧ u /∈ P:

– Then u becomes an X-Switch.

• u is a pole, i.e., u ∈ P:

– Then u becomes a Universal Gate.

11

2 Preliminaries

x2

x2x1

p = 0

x1

x2x1

p = 1

(a) Y-Switch

x2x1

x2x1

p = 0

x1x2

x2x1

p = 1

(b) X-Switch

Figure 2.2: The used switching nodes depending on the programming bit p.

This will cover all possible nodes in the constructions of Valiant and Liu et al. [Val76; LYZ+21]
as we will see in Sections 3.1 and 3.2.

Translating The Edge-Embedding to Programming Bits

Assume we have an edge-embedding ψ: P → V and want the corresponding programming
bits. We define for each switching node a left and right incoming (resp. outgoing) wire. For
each u-v-path ψ((u, v)), we set the programming bits of the switching nodes along the path
accordingly. For example, assume there is an X-Switch along the path, and the path enters this
switch by the left wire and needs to leave it by the right wire. Then, we set the programming
bit of this X-Switch to 1. Since we have edge-disjoint paths and the programming bits can
simulate every possible choice for each switch, this is always possible.

In practice, we directly set the control bits of the switches and do not build an explicit
edge-embedding map ψ. A modular algorithm to acquire the programming bits supporting
Valiant’s original construction (amongst others) is given in [GKS17]. With Algorithm 4 in
Section 3.1, we provide a variant of this algorithm for the constructions of Valiant [Val76]
and Liu et. al. [LYZ+21] that returns an explicit edge-embedding ψ to prove the correctness
of the EUG constructions.

12

3 Edge-Universal Graph Constructions

In this chapter, we present the original idea of Valiant [Val76] (Section 3.1), describe the
state-of-the-art construction of Liu et al. [LYZ+21] (Section 3.2), and prove the correctness of
both constructions.

3.1 Valiant’s Edge-Universal Graph Construction

The trick of Valiant’s EUG construction is to divide the problem of finding a Γ1(n) EUG into
the problem of finding a Γ1(⌈

n
k ⌉ − 1) EUG via a divide and conquer approach that divides

the EUG in k sub EUGs. The two main ideas of Valiant are the recursive structure of the
construction and the use of so-called Superpoles. A Superpole can be thought of a node that
has inputs, poles, and outputs, and guarantees an edge-disjoint routing between the inputs
and poles of the Superpole and between the poles and outputs. Imagine having the poles in
topological order in one line, and then grouping each k successive poles into a Superpole.
Now we can use the inputs and outputs of each Superpole as the poles for another EUG. If
we want to edge-embed an edge e = (u, v), we first do proper routing inside the Superpoles
that contain u and v. This means that we set the concrete output node at which u leaves his
Superpole and the input node at which u enters the Superpole of v and route accordingly
inside the Superpoles. Then, we can edge-embed the edge between the previously declared
output node and input node in our nested sub EUG since these nodes are just the poles of
this sub EUG.

We begin by defining the properties needed for our Superpoles. To capture this, we define
so-called Augmented k-Way Valiant Blocks (cf. Augmented DAG in [LYZ+21]). An Augmented
k-Way Valiant Block can be seen as a map that dictates which inputs will be directed to
which poles and which poles will be directed to which other poles or outputs. However,
any description of this mapping would suffice to capture the idea of a Superpole. For
example, [AGKS20] used an input and output vector for each Superpole to describe the
needed routing inside the Superpole.

Definition 3.1.1 (Augmented k-Way Valiant Block). An Augmented k-Way Valiant Block
G = (V, E) for P, I , O is a directed graph such that

• V = P ∪ I ∪O, P ∩ I = P ∩O = ∅ and |I |= |O|= k,

• G[P] := (P, EP) has fanin and fanout 1 (cf. Definition 1),

13

3 Edge-Universal Graph Constructions

• E = EP ∪ E io with E io satisfying:

– (Soundness) Every e ∈ E io satisfies either e = (in, p) or e = (p, out) for p ∈ P, in ∈
I , out ∈ O,

– (Completeness) For every source (resp. sink) p ∈ P, there exists at most one in ∈ I
(resp. out ∈ O) such that (in, p) ∈ E io (resp. (p, out) ∈ E io).

The set of all Augmented k-Way Valiant Blocks for P, I , O is denoted by Bk(P, I , O).

The sets I and O represent the inputs and outputs of a Superpole. Note that I ∩ O ̸= ∅ is
allowed by above definition. This is needed because the Superpoles in the construction
of Liu et al. [LYZ+21] uses "merged nodes" that function as input and output at the same
time. Since a Superpole shall guarantee the routing inside itself, we define the Superpole as
follows.

pi

pi+1

out1 out2

in1 in2

(a) Augmented 2-way Valiant
Block.

pi

pi+1

out1 out2

in1 in2

(b) Valiant’s 2-way Superpole
that edge-embeds graph (a).

pi

pi+1

pi+2

pi+3

in1 in2 in3 in4

out1 out2 out3 out4

(c) Valiant’s 4-way Superpole.

Figure 3.1: Augmented 2-Way Valiant Block and Valiant’s Superpole constructions.

14

3 Edge-Universal Graph Constructions

Definition 3.1.2 (k-Way Superpole). A k-Way Superpole is a graph G = (V, E, P,P,I,O),
where the following conditions hold:

• P = P ∪ I ∪O with |I|= |O|= k and P ∩ I = P ∩O = ∅.

• G can edge-embed every G′ ∈ Bk(P,I,O).

We denote the input recursion points I of a k-Way Superpole as {in1, in2, ..., ink} and the
output recursion points O as {out1, out2, ..., outk}. These nodes serve as as the inputs and
outputs to the Superpole and will be the poles of the next recursion, i.e., of the next sub
EUG. We neither require the sets I and O to be disjoint nor that the recursion points of
different Superpoles must be disjoint. Thus, it is possible that two different Superpoles share
the same or partly the same recursion points. Both constructions of Valiant and Liu et al.
heavily use this possibility, which is also called "merged nodes" since one node functions as
different recursion points for possibly different Superpoles. In case of Valiant’s construction,
the output recursion points of the i-th Superpole are merged with the input recursion points
of the (i + 1)-th Superpole.

Before we begin describing the construction, we need to make one technical but natural
assumption. We assume that the edge-embeddings of the Superpoles fulfill the restriction
that there is no path in the edge-embedding that uses a pole or a recursion point as an
intermediary node. The reason for this pole restriction is that when translating the EUG
into a UC, we need to instantiate the poles with Boolean gates and can not just pass the
input value. The restrictions on the recursion points is needed for the EUG construction of
Liu et al. (cf. proof of Theorem 3). Note that it does not make any sense to use a recursion
point or a pole as an intermediary node in the Superpole constructions we will see in this
work or in the Superpoles used in practice [Val76; KS16; LMS16; GKS17; ZYZL19; AGKS20;
LYZ+21]. However, pathological instances violating these restrictions could be build and we
have to exclude them for above reasons.

15

3 Edge-Universal Graph Constructions

Algorithm 2: VALIANT(P, k)
Input : Poles P := {p1, ..., pn}, split parameter k
Output : Γ1(n) EUG G = (V, E, P, G∗, G1, ..., Gk)

1 V ← ∅, E← ∅, G∗← ∅
2 Os0

← create k dummy nodes
3 for i← 1 to ⌈ n

k ⌉ :
4 Psi

← {pk(i−1)+1, ..., pki}
5 si = (V si

, Esi
, Psi

,Psi
,Isi

,Osi
)← CREATESUPERPOLE(Psi

,Osi−1
, k) // Use Osi−1

as

input recursion points to this Superpole (cf. Figure 3.1)

6 G∗← G∗ ∪ {si}
7 V ← V ∪ V i , E← E ∪ E i

8 for i← 1 to k :
9 if n≤ k :

10 G i ← (∅, ...,∅) // Recursion base

11 else
// Take the i-th output recursion point of each Superpole (but the last) as

the poles for the next sub EUG

12 P i ← {Os1
[i],Os2

[i], ...,Os⌈
n
k ⌉−1
[i]}

13 G i = (V i , E i , ...)← VALIANT(P i , k)
14 V ← V ∪ V i , E← E ∪ E i

15 return G = (V, E, P, G∗, G1, ..., Gk)

Definition 3.1.3 (Valiant EUG). A Valiant EUG G = (V, E, P, G∗, G1, ..., Gk) is a graph that is
created by Algorithm 2 (VALIANT). We also use the notation VALIANTk(n) for a Valiant EUG
with n poles and split parameter k if the concrete poles are not relevant for the statement.

A depiction of Valiant’s EUG construction is given in Figure 3.2. The algorithm CREATESUPER-
POLE(P,O, k) creates a Superpole with poles P, input recursion points O, and split parameter k.
A depiction of the Superpoles used in Valiant’s construction for k ∈ {2,4} can be seen in
Figure 3.1. We refrain from providing the proof that these Superpole constructions are indeed
correct since the proof would be tedious and purely technical. As stated above these output
recursion points of the (i − 1)-th Superpole are also used as the input recursion points of the
i-th Superpole. This results in reducing our problem to k EUGs of size ⌈ n

k ⌉ − 1. The creation

of the first output recursion points Os0
is a technical trick and not needed because these

vertices will never be used. But, this simplifies the definition of the algorithm by avoiding a
case distinction.

16

3 Edge-Universal Graph Constructions

p1

p2

(out1/in2)l (out1/in2)r

p3

p4

(out2/in3)l (out2/in3)r

p5

p6

(out3/in4)l (out3/in4)r

p7

p8

(out1/in2)l r(out1/in2)l l (out1/in2)r r (out1/in2)r l

Figure 3.2: Valiant’s 2-Way-Split construction for 8 poles. Note that unnecesserary head and
tail nodes of each EUG and sub EUG were removed.

Proposition 2. Let G = (V, E, P, G∗, G1, ..., Gk) be a Valiant EUG with |P|= n sufficiently large,
then

|G| ≤
|SPk|

k log2(k)
n log2(n) +O(n),

where |SPk| denotes the size of a k-Way Superpole without recursion points and with k poles.

Proof. By definition of Algorithm 2, we add ⌈ n
k ⌉ k-Way Superpoles (each Superpole has k

poles except for the last with possibly less) and k VALIANTk(⌈
n
k ⌉ − 1) graphs for n> k. This

yields

|VALIANTk(n)| ≤ ⌈
n
k
⌉|SPk|+ k |VALIANTk(⌈

n
k
⌉ − 1)|

17

3 Edge-Universal Graph Constructions

≤ (
n
k
+ 1)|SPk|+ k |VALIANTk(

n
k
)| (3.1)

(3.1)
≤ (

n
k
+ 1)|SPk|+ k((

n
k2
+ 1)|SPk|+ k |VALIANTk(

n
k2
)|)

= (
n
k
+ 1)|SPk|+ (

n
k
+ k)|SPk|+ k2 |VALIANTk(

n
k2
)|

=
1
∑︂

i=0

(
n
k
+ ki)|SPk|+ k2 |VALIANTk(

n
k2
)|.

Iterating above inequality and using |VALIANTk(m)| ≤ |SPk| for m ≤ k (∗) yields (with the
smallest x ∈ N such that n

kx ≤ k)

|VALIANTk(n)| ≤
x−1
∑︂

i=0

(
n
k
+ ki)|SPk|+ kx |VALIANTk(

n
kx
)|

(∗)
≤

x−1
∑︂

i=0

(
n
k
+ ki)|SPk|+ kx |SPk|

= (x
n
k
+

x
∑︂

i=0

ki)|SPk|

geometric series
= (x

n
k
+

kx+1 − 1
k− 1

)|SPk|.

(3.2)

It follows x = ⌈logk(n)− 1⌉. Thus, (3.2) becomes

⌈logk(n)− 1⌉
n
k
|SPk|+

k⌈logk(n)−1⌉+1 − 1
k− 1

|SPk| ≤ logk(n)
n
k
|SPk|+

klogk(n)+1 − 1
k− 1

|SPk|

= logk(n)
n
k
|SPk|+

nk− 1
k− 1

|SPk|

=
|SPk|

k log2(k)
n log2(n) +O(n).

Using the Superpoles depicted in Figure 3.1 with |SP2| = 5 and |SP4| = 19, we get up-
per bounds for the leading coefficient in Proposition 2 of 2.5n log2 n and 2.375n log2 n for
Γ1(n) EUGs. Merging two instances of these EUGs results in upper bounds of 5n log2 n
and 4.75n log2 n. In [ZYZL19], a new 4-Way Superpole with 18 nodes was proposed, which
leads to an upper bound of 4.5n log2 n.

To prove that Valiant’s construction is indeed an EUG, we define the edge-embedding algorithm
EDGEEMBEDDING (Algorithm 3) on page 19. This algorithm can also be used to get an edge-
embedding for the weak version of the EUG construction of Liu et al. [LYZ+21] (cf. Section 3.2).
In Theorem 4, we will see that this is sufficient to get an edge-embedding for the (optimized)
construction of Liu et al. The algorithm consists of the following four steps:

18

3 Edge-Universal Graph Constructions

Step 1: Create a Γk(⌈
n
k ⌉ − 1) graph that contains the edges between the input and output

recursion points of the Superpoles that need to be embedded in the next recursion step.
Then, split this graph into k Γ1(⌈

n
k ⌉ − 1) graphs by Corollary 2. This determines which edges

will be embedded into which sub EUGs and yields an Augmented k-Way Valiant Block for
every Superpole. They contain the path information for the Superpoles. This is done by the
algorithm PATHFINDING on page 20, which uses the idea of the edge-embedding algorithm
in [GKS17].

Step 2: Embed the Augmented k-Way Valiant Blocks into the Superpoles. This is done by an
edge-embedding algorithm SUPERPOLEEDGEEMBEDDING for the used Superpoles. As stated
before, the definition of a concrete algorithm with a correctness proof would be too complex
and time consuming. However, an open source implementation of the edge-embedding
algorithms for the Superpoles described in [Val76; LMS16; ZYZL19; AGKS20] can be found
in [AGKS20, §4.1 Block Edge-Embedding].

Step 3: Embed the k Γ1(⌈
n
k ⌉ − 1) graphs into the k sub EUGs. This is done by (recursively)

calling EDGEEMBEDDING (Algorithm 3) on the sub EUGs.

Step 4: Combine the obtained edge-embeddings from the Superpoles and sub EUGs. This is
done by COMBINEEDGEEMBEDDINGS (Algorithm 5).

Algorithm 3: EDGEEMBEDDING(G, G′)
Input : Valiant EUG [Val76] or weak Liu EUG [LYZ+21]

G = (V, E, P, G∗ = {s1, ..., s⌈
n
k ⌉}, G1, ..., Gk), G′ = (P, E′) ∈ Γ1(n)

Output : Edge-embedding ψ of G′ into G
1 if V = ∅ :
2 return empty map ψ // Recursion base

3 A1, ..., A⌈
n
k ⌉, R1, ..., Rk← PATHFINDING(G, G′)

4 for i← 1 to ⌈ n
k ⌉ :

5 ψAi
← SUPERPOLEEDGEEMBEDDING(si , Ai)

6 for j← 1 to k :
7 ψR j

← EDGEEMBEDDING(G j , R j)

8 ψ← COMBINEEDGEEMBEDDINGS (G, G′,ψA1
, ...,ψA⌈

n
k ⌉ ,ψR1

, ...,ψRk
)

9 return ψ

19

3 Edge-Universal Graph Constructions

Algorithm 4: PATHFINDING(G, G′)
Input : Valiant EUG [Val76] or weak Liu EUG [LYZ+21]

G = (V, E, P, G∗ = {s1, ..., s⌈
n
k ⌉}, G1, ..., Gk), G′ = (P, E′) ∈ Γ1(n)

Output : Augmented k-Way Valiant Blocks A1, A2, ...,A⌈
n
k ⌉,

R1, R2, ...,Rk ∈ Γ1(⌈
n
k ⌉ − 1) for Valiant or Γ1(⌈

n
k ⌉) for weak Liu

1 for i← 1 to ⌈ n
k ⌉ :

2 Let I i ,Oi ,P i be the input/output recursion points and the poles of the Superpole si

3 Ai = (V Ai
, EAi
)← (I i ∪Oi ∪P i ,∅)

// R will be the graph that describes which edges between the recursion points of

the Superpoles will embedded in the sub EUGs.

4 Ṽ R← create an input node ini for each Superpole si but the first and an output node
out i for each Superpole but the last

// In [Val76]: ini−1 = out i. In [LYZ+21]: ini = out i.

5 ẼR← ∅
6 R̃← (Ṽ R, ẼR)
7 foreach e = (u, v) ∈ E′ :
8 Let si and s j be the Superpoles in which u and v are a pole
9 if i ̸= j :

10 ẼR← ẼR ∪ {(out i , in j)}

11 R̃1 = (Ṽ R, Ẽ1
R), R̃2 = (Ṽ R, Ẽ2

R), ..., R̃k = (Ṽ R, Ẽk
R)← k-coloring of R̃ (cf. Corollary 2)

12 for l ← 1 to k :
// We now ’un-merge’ these ’merged’ recursion points to get the concrete

recursion points

13 Let IOl be the poles of G l // These poles are exactly the l-th input and output

recursion points inl
i , out l

i of each Superpole si.

14 Rl = (V l
R , E l

R)← (IOl ,∅)
15 foreach e = (out i , in j) ∈ Ẽ l

R :
16 E l

R← E l
R ∪ {(out i

l , in j
l)}

17 foreach e = (u, v) ∈ E′ :
18 Let si and s j be the Superpoles in which u and v are a pole.
19 if i = j :
20 EAi

← EAi
∪ {(u, v)}

21 else
22 Choose x ∈ [k] such that (out i

x , in j
x) ∈ Rx and not marked

23 mark (out i
x , in j

x) in Rx

24 EAi
← EAi

∪ {(u, out i
x)}

25 EAj
← EAj

∪ {(in j
x , v)}

26 return A1, A2, ..., A⌈
n
k ⌉, R1, R2, ..., Rk

20

3 Edge-Universal Graph Constructions

Algorithm 5: COMBINEEDGEEMBEDDINGS(G, G′,ψA1
, ...,ψA⌈

n
k ⌉ ,ψR1

, ...,ψRk
)

Input : Valiant EUG [Val76] or weak Liu EUG [LYZ+21]
G = (V, E, P, G∗ = {s1, ..., s⌈

n
k ⌉}, G1, ..., Gk), G′ = (P, E′) ∈ Γ1(n),

edge-embeddings ψA1
, ...,ψA⌈

n
k ⌉ of Augmented k-Way Valiant Blocks

A1, ...,A⌈
n
k ⌉ into Superpoles s1, ..., s⌈

n
k ⌉ and edge-embeddings ψR1

, ...,ψRk
of

R1, ..., Rk ∈ Γ1(⌈
n
k ⌉ − 1) for Valiant or Γ1(⌈

n
k ⌉) for weak Liu into G1, ..., Gk

given by PATHFINDING(G, G′)
Output : Edge-embedding ψ of G′ into G

1 foreach (u, v) ∈ E′ :
2 Let si and s j be the Superpoles in which u and v are a pole
3 if i = j :
4 ψ((u, v))←ψAi

((u, v))

5 else
// There is exactly one edge (u, out i

m) ∈ Ai for some m ∈ k

6 out i
m← the output recursion point to which u is routed inside Ai

// There is exactly one edge (v, in j
m) ∈ Aj

7 in j
m← the input recursion point which is routed to v inside Aj

// ’+’ denotes the concatenation of paths

8 ψ((u, v))←ψAj
((u, out i

m)) +ψ
Gm
((out i

m, in j
m)) +ψAi

((in j
m, v))

9 return ψ

Using PATHFINDING to get the path information R1, ..., Rk and Superpole routings A1, ..., A⌈
n
k ⌉,

the following Lemma guarantees that we can edge-embed R1, ..., Rk into the corresponding
sub EUGs G1, ..., Gk and A1, ...,A⌈

n
k ⌉ into the Superpoles s1, ..., s⌈

n
k ⌉.

Lemma 1. Let G = (V, E, P, G∗, G1, ..., Gk) be a Valiant EUG with n poles, G′ = (P, E′) ∈ Γ1(n)
the order preserving graph to be embedded and IOi the set of the i-th input recursion points
of each Superpole sl ∈ G∗ (except for l = 1) for i ∈ [k]. Let I j ,O j ,P j be the input recursion
points, output recursion points, and the poles of the Superpole s j ∈ G∗ for j ∈ [⌈ n

k ⌉]. Then,
PATHFINDING(G, G′) outputs Aj ∈ Bk(P j ,I j ,O j) ∀ j ∈ [⌈ n

k ⌉] and Ri = (IOi , Ei) ∈ Γ1(⌈
n
k ⌉−1)

that are order preserving ∀ i ∈ [k].

Proof. We begin by showing that R1, R2, ...,Rk ∈ Γ1(⌈
n
k ⌉ − 1).

Consider R̃ = (Ṽ R, ẼR) (with ẼR being a multi set of edges), where V R is the set that contains
one node inl per Superpole sl ∈ G∗ (except for the first Superpole) for l ∈ {2, ..., ⌈ n

k ⌉}. Each
node represents an merged input recursion point and this graph will contain the edges which
are embedded in the sub EUGs (lines 4-6). Note that the l-th input recursion points are the
(l − 1)-th output recursion points in Valiant’s construction, i.e., inl = out l−1 ∀ l ∈ {2, ..., ⌈ n

k ⌉}.
Thus, |Ṽ R|= ⌈ n

k ⌉ − 1.

21

3 Edge-Universal Graph Constructions

An edge (out l , inm) for l, m ∈ [⌈ n
k ⌉] is added to ER if and only if there is an edge from a

vertex u ∈ sl to v ∈ sm with l ≠ m (lines 7-10). Since a Superpole has at most k poles and G′

has fanin/fanout 1, there can be at most k incoming and k outgoing edges into each merged
input/output recursion point. Because G′ is order preserving and the order of poles in G∗ is
maintained, every edge (out l , inm) ∈ ER implies l < m. In particular, R is acyclic and order
preserving. Thus, R ∈ Γk(⌈

n
k ⌉ − 1).

We now use Corollary 2 to get R̃i ∈ Γ1(⌈
n
k ⌉ − 1) ∀ i ∈ [k] (line 11) and replace the merged

nodes Ṽ R of each R̃i by the i-th input (resp. (i − 1)-th output) recursion points IOi to get Ri

(lines 12-16).

Now consider Aj = (V Aj
, EAj
) for j ∈ ⌈ n

k ⌉. By line 3 in PATHFINDING, we have V Aj
= P j∪I j∪O j .

Assume there is a vertex v ∈ V Aj
with deg−/+

Aj (v) > 1.

Case 1: v ∈ P j

Edges in Aj from/to v are added if and only if there are corresponding edges from/to v in G′

(lines 17-25). But then deg−/+
Aj (v) > 1 would imply that v has in- or outdegree greater than 1

in G′. Thus, G′ can not have fanin or fanout 1. �

Case 2: v ∈ I j ∪O j

In this case, edges from/to v are added if and only if there is a corresponding edge from/to v
in Rx for some x ∈ [k] (line 22). Since Rx has fanin and fanout 1, one can apply the same
argument as above.

Therefore, Aj ∈ Γ1(|P j∪I j∪O j|). Define E io
Aj to be the set of all edges in EAj

that connect poles
and inputs or outputs. Let EP

Aj be the set of edges between poles. Since there are no edges

between input and output recursion points, EAj
= EP

Aj ∪ E io
Aj with E io

Aj ∩ EP
Aj = ∅. Then, each e ∈

E io
Aj is of the form e = (in, p) or e = (p, out) for p ∈ P j , in ∈ I j , out ∈ O j (Soundness).

Note that Aj having fanin and fanout 1 implies (Completeness). Furthermore, Aj[P] is order
preserving since edges between poles in Aj directly correspond to edges in G′. Thus, Aj ∈
B(P j ,I j ,O j).

Now we can prove that Valiant’s construction indeed yields a Γ1 EUG.

Theorem 2. Let G = (V, E, P, G∗, G1, ..., Gk) be a Valiant EUG with n poles. Then G is an EUG
for Γ1(n). In particular, EDGEEMBEDDING(G, G′) yields an edge-embedding from G′ into G for
all order preserving G′ = (P, E′) ∈ Γ1(n).

Proof. We prove the statement by induction over the number of poles n.

Induction base: 0< n≤ k
Note that by definition of VALIANT(P, k), G consists of only one Superpole with n poles.
Now consider EDGEEMBEDDING(G, G′). Since G only has one Superpole and no sub EUGs,
PATHFINDING returns A1 ∈ Bk(P,I1,O1) and R1 = R2 = ... = Rk = (∅,∅). Note that all poles

22

3 Edge-Universal Graph Constructions

of G′ are contained in A1 which is to be embedded into s1 (resp. G) in line 5. Let (u, v) ∈ E′.
We show that ψ((u, v)) yields a u-v-path in G. The edge (u, v) is added to A1 in line 20
of PATHFINDING. Since A1 is edge-embedded into s1, ψAi

((u, v)) is already a u-v-path in G.
COMBINEEDGEEMBEDDINGS in line 8 then sets ψ((u, v)) = ψA1

((u, v)) ∀ (u, v) ∈ E′. Since
the paths of the image of ψA1

are disjoint, also the paths of the image of ψ are disjoint.
Therefore, ψ is an edge-embedding from G′ into G.

Induction step: n− 1⇝ n

We begin by calling PATHFINDING(G, G′) to get Aj ∈ Bk(P j ,I j ,O j) for each Superpole s j ∈
G∗, j ∈ [⌈ n

k ⌉] and order preserving Ri = (IOi , Ei) ∈ Γ1(⌈
n
k ⌉−1) ∀ i ∈ [k] (line 3, by Lemma 1).

By definition of a Superpole, we can edge embed each Aj into s j ∈ G∗ ∀ j ∈ [⌈ n
k ⌉] (line 5).

Since the sub EUGs G1, ..., Gk have ⌈ n
k ⌉ − 1 poles , we can edge embed each Ri , by induction

hypothesis, into G i ∀ i ∈ [k] (line 7). This yields corresponding maps ψAj
and ψG i

for
j ∈ [⌈ n

k ⌉] and i ∈ [k]. We now show how this gives rise to an edge-embedding ψ of G′ into
G. Let (u, v) ∈ E′.

Case 1: u and v are in the same Superpole s j ∈ G∗

Then, we set ψ((u, v)) =ψAj
((u, v)). Since (u, v) ∈ Aj (line 20 in PATHFINDING) and ψAj

is a
correct edge-embedding, this yields a correct u-v-path in G.

Case 2: u ∈ s j and v ∈ sl for j ̸= l

Then, there must be edges (u, out j
m) ∈ Aj , (out j

m, inl
m) ∈ Rm, and (inl

m, v) ∈ Al for some
m ∈ [k] (lines 9-10 and 21-25 in PATHFINDING). Set

ψ((u, v)) =ψs j
((u, out j

m)) +ψ
Gm
((out j

m, inl
m)) +ψ

sl
((inl

m, v)),

where ’+’ denotes the concatenation of the paths. Note that s j , Gm, and sl are node-disjoint
(except for the recursion points). Thus, ψ((u, v)) contains no cycles, and ψ((u, v)) is a
u-v-path in G.

Furthermore, all paths in the image of ψ are edge-disjoint because all Superpoles and sub
EUGs are edge-disjoint. The described creation of ψ is done by COMBINEEDGEEMBEDDINGS

in line 8.

23

3 Edge-Universal Graph Constructions

3.2 Liu et al.’s Edge-Universal Graph Construction

pi

pi+1

(in/out)l (in/out)r

(a) 2-Way-Superpole.

pi

pi+1

(in/out) jl (in/out) jr

pi+2

pi+3

(in/out) j+1
l (in/out) j+1

r

. . .

. . .
.

.

.

(b) Basic structure for the 2-Way split.

Figure 3.3: Superpole and basic structure of the 2-Way split construction of Liu et al.

As stated in the beginning, the EUG construction of Liu et al. [LYZ+21] relies on the same basic
ideas as Valiant’s EUG construction, but it does some smart optimizations to the construction
to reduce the size of the (until then) smallest size of ∼ 4.5n log2 n [ZYZL19] by 33% to ∼
3n log2 n. Similar to the original paper, we begin by defining an intermediate construction, a
so called weak version. This is an EUG that is neither more efficient than Valiant’s original
construction nor is it acyclic, but we can optimize out the redundancy in order to remove the
cycles and reduce the size.

3.2.1 TheWeak Version

The two main components of [LYZ+21] are still the recursive structure and the Superpoles.
However, this time we do not merge the output recursion points of the i-th Superpole with
the input recursion points of the (i + 1)-th Superpole, but instead we merge the input and
output recursion points of each Superpole (cf. Figure 3.3). This results in the aforementioned
disadvantages of a recursion size of ⌈ n

k ⌉ instead of ⌈ n
k ⌉ − 1 and cycles within the Superpoles.

The Superpole itself (without input/output recursion points) stays unaffected. An example
of a weak Liu EUG is given in Figure 3.4 on page 26.

24

3 Edge-Universal Graph Constructions

Algorithm 6: WEAKLIU(P, k)
Input : Poles P := {p1, ..., pn}, split parameter k
Output : Γ1(n) EUG G = (V, E, P, G∗, G1, ..., Gk)

1 V ← ∅, E← ∅, G∗← ∅
2 for i← 1 to ⌈ n

k ⌉ :
3 Psi

← {pk(i−1)+1, ..., pki}
4 si = (V si

, Esi
, Psi

,Psi
,Isi

,Osi
)← CREATESUPERPOLE(Psi

, k)
5 G∗← G∗ ∪ {si}
6 V ← V ∪ V i , E← E ∪ E i

7 for i← 1 to k :
8 if n≤ k :
9 G i ← (∅, ...,∅) // Recursion base

10 else
// Take the i-th output recursion point of each Superpole as the poles for

the next sub EUG

11 P i ← {Os1
[i],Os2

[i], ...,Os⌈
n
k ⌉−1
[i],Os⌈

n
k ⌉[i]}

12 G i = (V i , E i , ...)←WEAKLIU(P i , k)
13 V ← V ∪ V i , E← E ∪ E i

14 return G = (V, E, P, G∗, G1, ..., Gk)

Definition 3.2.1 (Weak Liu EUG). A weak Liu EUG G = (V, E, P, G∗, G1, ..., Gk) is a graph that
is created by Algorithm 6 (WEAKLIU) on page 25. We also use the notation WEAKLIUk(n) for a
weak Liu EUG with n poles and split parameter k if the concrete poles are not relevant for the
statement.

The proof that each weak Liu EUG is an EUG is very similar to the proof for Valiant’s con-
struction. The only difference is that a recursion size of ⌈ n

k ⌉ is used instead of ⌈ n
k ⌉ − 1.

Hence, we also use the same edge-embedding algorithm EDGEEMBEDDING on page 19 as with
Valiant’s construction. The following proofs are analogous to the prior proofs for Valiant’s
construction.

Lemma 2. Let G = (V, E, P, G∗, G1, ..., Gk) be a weak Liu EUG [LYZ+21] with n poles, G′ =
(P, E′) ∈ Γ1(n) the order preserving graph to be embedded and IOi the set of the i-th input
recursion points of each Superpole sl ∈ G∗ (except for l = 1) for i ∈ [k]. Let I j ,O j ,P j

be the input recursion points, output recursion points, and the poles of the Superpole s j ∈
G∗ for j ∈ [⌈ n

k ⌉]. Then, PATHFINDING(G, G′) outputs Aj ∈ Bk(P j ,I j ,O j) ∀ j ∈ [⌈ n
k ⌉] and

Ri = (IOi , Ei) ∈ Γ1(⌈
n
k ⌉) that are order preserving ∀ i ∈ [k].

Proof. We begin by showing that R1, R2, ...,Rk ∈ Γ1(⌈
n
k ⌉).

25

3 Edge-Universal Graph Constructions

p1

p2

(in/out)1l (in/out)1r

p3

p4

(in/out)2l (in/out)2r

p5

p6

(in/out)3l (in/out)3r

p7

p8

(in/out)4l (in/out)4r

(in/out)1l r(in/out)1l l

(in/out)2l r(in/out)2l l

(in/out)1r l (in/out)1r r

(in/out)2r l (in/out)2r r

Figure 3.4: The complete Γ1(8) EUG with Liu’s weak 2-Way-Split construction for 8 poles.

Consider R̃ = (Ṽ R, ẼR) (with ẼR being a multi set of edges), where V R is the set that contains
one node inl per Superpole sl ∈ G∗ for l ∈ {2, ..., ⌈ n

k ⌉}. Each node represents an merged input
recursion point and this graph will contain the edges which are embedded in the sub EUGs
(lines 4-6). Note that the l-th input recursion points are the l-th output recursion points in
the construction of Liu et al. [LYZ+21], i.e., inl = out l ∀ l ∈ {1, ..., ⌈ n

k ⌉}. Thus, |Ṽ R|= ⌈ n
k ⌉.

An edge (out l , inm) for l, m ∈ [⌈ n
k ⌉] is added to ER if and only if there is an edge from a

vertex u ∈ sl to v ∈ sm with l ̸= m (lines 7-10). Since a Superpole has at most k poles and G′

has fanin/fanout 1, there can be at most k incoming and k outgoing edges into each merged
input/output recursion point. Because G′ is order preserving and the order of poles in G∗ is
maintained, every edge (out l , inm) ∈ ER implies l < m. In particular, R is acyclic and order
preserving. Thus, R ∈ Γk(⌈

n
k ⌉).

26

3 Edge-Universal Graph Constructions

We now use Corollary 2 to get R̃i ∈ Γ1(⌈
n
k ⌉) ∀ i ∈ [k] (line 11) and replace the merged nodes

Ṽ R of each R̃i by the i-th input (resp. (i − 1)-th output) recursion points IOi to get Ri (lines
12-16).

Now consider Aj = (V Aj
, EAj
) for j ∈ ⌈ n

k ⌉. By line 3 in PATHFINDING, we have V Aj
= P j∪I j∪O j .

Assume there is a vertex v ∈ V Aj
with deg−/+

Aj (v) > 1.

Case 1: v ∈ P j

Edges in Aj from/to v are added if and only if there are corresponding edges from/to v in G′

(lines 17-25). But then deg−/+
Aj (v) > 1 would imply that v has in- or outdegree greater than 1

in G′. Thus, G′ can not have fanin or fanout 1. �

Case 2: v ∈ I j ∪O j

In this case, edges from/to v are added if and only if there is a corresponding edge from/to v
in Rx for some x ∈ [k] (line 22). Since Rx has fanin and fanout 1, one can apply the same
argument as above.

Therefore, Aj ∈ Γ1(|P j∪I j∪O j|). Define E io
Aj to be the set of all edges in EAj

that connect poles
and inputs or outputs. Let EP

Aj be the set of edges between poles. Since there are no edges

between input and output recursion points, EAj
= EP

Aj ∪ E io
Aj with E io

Aj ∩ EP
Aj = ∅. Then, each e ∈

E io
Aj is of the form e = (in, p) or e = (p, out) for p ∈ P j , in ∈ I j , out ∈ O j (Soundness).

Note that Aj having fanin and fanout 1 implies (Completeness). Furthermore, Aj[P] is order
preserving since edges between poles in Aj directly correspond to edges in G′. Thus, Aj ∈
B(P j ,I j ,O j).

Theorem 3. Let G = (V, E, P, G∗, G1, ..., Gk) be a weak Liu EUG with n poles. Then G is an EUG
for Γ1(n). In particular, EDGEEMBEDDING(G, G′) yields an edge-embedding from G′ into G for
all order preserving G′ = (P, E′) ∈ Γ1(n).

Proof. We prove the statement by induction over the number of poles n.

Induction base: 0< n≤ k
Note that by definition of WEAKLIU(P, k), G consists of only one Superpole with n poles.
Now consider EDGEEMBEDDING(G, G′). Since G only has one Superpole and no sub EUGs,
PATHFINDING returns A1 ∈ Bk(P,I1,O1) and R1 = R2 = ... = Rk = (∅,∅). Note that all poles
of G′ are contained in A1 which is to be embedded into s1 (resp. G) in line 5. Let (u, v) ∈ E′.
We show that ψ((u, v)) yields a u-v-path in G. The edge (u, v) is added to A1 in line 20
of PATHFINDING. Since A1 is edge-embedded into s1, ψAi

((u, v)) is already a u-v-path in G.
COMBINEEDGEEMBEDDINGS in line 8 setsψ((u, v)) =ψA1

((u, v)) ∀ (u, v) ∈ E′. Since the paths
of the image of ψA1

are disjoint, also the paths of the image of ψ are disjoint. Therefore, ψ is
an edge-embedding from G′ into G.

Induction step: n− 1⇝ n

We begin by calling PATHFINDING(G, G′) to get Aj ∈ Bk(P j ,I j ,O j) for each Superpole s j ∈

27

3 Edge-Universal Graph Constructions

G∗, j ∈ [⌈ n
k ⌉] and order preserving Ri = (IOi , Ei) ∈ Γ1(⌈

n
k ⌉) ∀ i ∈ [k] (line 3, by Lemma 1).

By definition of a Superpole, we can edge embed each Aj into s j ∈ G∗ ∀ j ∈ [⌈ n
k ⌉] (line 5).

Since the sub EUGs G1, ..., Gk have ⌈ n
k ⌉ poles , we can edge embed each Ri, by induction

hypothesis, into G i ∀ i ∈ [k] (line 7). This yields corresponding maps ψAj
and ψG i

for
j ∈ [⌈ n

k ⌉] and i ∈ [k]. We now show how this gives rise to an edge-embedding ψ of G′ into
G. Let (u, v) ∈ E′.

Case 1: u and v are in the same Superpole s j ∈ G∗

Then we set ψ((u, v)) =ψAj
((u, v)). Since (u, v) ∈ Ai (line 20 in PATHFINDING) and ψAj

is a
correct edge-embedding, this yields a correct u-v-path in G.

Case 2: u ∈ s j and v ∈ sl for j ̸= l

Then there must be edges (u, out j
m) ∈ Aj , (out j

m, inl
m) ∈ Rm and (inl

m, v) ∈ Al for some m ∈ [k]
(lines 9-10 and 21-25 in PATHFINDING). Set

ψ((u, v)) =ψs j
((u, out j

m)) +ψ
Gm
((out j

m, inl
m)) +ψ

sl
((inl

m, v)),

where ’+’ denotes the concatenation of the paths. Note that s j , Gm and sl are node-disjoint
(except for the recursion points). By assumption, we never use a Superpole edge-embedding
that uses an input or output recursion point as an intermediary node. Since there are no
paths between input and output recursion points in the Augmented k-Way Valiant Blocks (cf.
(Soundness) in Definition 3.1.1), the only possible cycle in the EUG via the recursion points
is not used. Thus, ψ((u, v)) contains no cycles, and ψ((u, v)) is a u-v-path in G.

Furthermore, all paths in the image of ψ are edge-disjoint because all Superpoles and sub
EUGs are edge-disjoint. The described creation of ψ is done by COMBINEEDGEEMBEDDINGS

in line 8.

Next, we want to show that the weak construction of Liu et al. [LYZ+21] results in (asymp-
totically) the same size as Valiant’s construction [Val76] with the same upper bound on the
leading coefficient. To do that, we first need to calculate the number of Superpoles in each
recursion step of the algorithm.

Lemma 3. The number of poles in the i-th recursion step in Algorithm 6 (WEAKLIU) is given by

n̂i =

¨

⌈ n
ki ⌉, if n̂i−1 > k,

0, else
∀ i ∈ {1, 2, . . .}.

Furthermore, we define n̂0 = n. Thus, the number of Superpoles in the i-th recursion step is
given by n̄i := ⌈ n̂i

k ⌉ ∀i ∈ {1,2, . . .}.

Proof. We proof the statement by induction over the number of recursion steps.

Induction start: i = 0
Then, we obviously have n̂0 = n poles.

28

3 Edge-Universal Graph Constructions

Induction step: i = l + 1

By induction hypothesis, it holds n̂l = 0 or n̂l = ⌈
n
kl ⌉. Trivially, in the first case n̂l+1 = 0. So

assume n̂l = ⌈
n
kl ⌉.

If n̂l ≤ k, no recursion is called. Therefore, n̂l+1 = 0. Otherwise, the number of poles in the
(l + 1)-th recursion is the number of Superpoles in the l-th recursion (line 11 in WEAKLIU),

i.e., ⌈ nl̂
k ⌉= ⌈

⌈ n
kl ⌉
k ⌉= ⌈

n
kl+1 ⌉.

The number of Superpoles n̄i directly follows from the number of poles n̂i since each Superpole
contains k consecutive poles (except for the last Superpole).

Proposition 3. Let G = (V, E, P, G∗, G1, ..., Gk) be a weak Liu EUG with |P| = n sufficiently
large, then

|G| ≤
|SPk|

k log2(k)
n log2(n) +O(n),

where |SPk| denotes the size of a k-Way Superpole without recursion points with k poles.

Proof. By definition of Algorithm 6(WEAKLIU), we have

|WEAKLIUk(n̄i−1)| ≤

¨

|SPk|, if n̄i−1 ≤ k,

n̄i|SPk|+ k |WEAKLIUk(n̄i)|, else
∀ i ∈ {1,2, . . .} (3.3)

for the number of Superpoles in the i-th recursion step n̄i like in Lemma 3. Iterating (3.3)
yields (with the smallest x ∈ N such that ⌈ n

kx ⌉ ≤ k, i.e., x = ⌈logk(n)− 1⌉)

|WEAKLIUk(n)| ≤ n̄0|SPk|+ k |WEAKLIUk(n̄0)|
≤ n̄0|SPk|+ k(n̄1|SPk|+ k |WEAKLIUk(n̄1)|)

≤ n̄0|SPk|+ kn̄1|SPk|+ k2(n̄2|SPk|+ k |WEAKLIUk(n̄2)|)
≤ ...

≤
x−1
∑︂

i=0

ki n̄i|SPk|+ kx |SPk|

Lemma 3
=

x−1
∑︂

i=0

ki⌈
n

ki+1
⌉|SPk|+ kx |SPk|

≤
x−1
∑︂

i=0

ki(
n

ki+1
+ 1)|SPk|+ kx |SPk|

= (x
n
k
+

x
∑︂

i=0

ki)|SPk|

geometric series
= (x

n
k
+

kx+1 − 1
k− 1

)|SPk|.

29

3 Edge-Universal Graph Constructions

Thus,

|WEAKLIU(n)| ≤ (⌈logk(n)− 1⌉
n
k
+

k⌈logk(n)−1⌉+1 − 1
k− 1

)|SPk|

≤ (logk(n)
n
k
+

klogk(n)+1 − 1
k− 1

)|SPk|

= (logk(n)
n
k
+

kn− 1
k− 1

)|SPk|

=
|SPk|

k log2(k)
n log2(n) +O(n).

Note that in the proof of the size of Valiant’s construction (Proposition 2), we always bounded
⌈ n

k ⌉ − 1 from above by n
k . Thus, we get the same asymptotic bound on the size of the EUG.

However, the concrete size of Valiant’s EUG construction for large n is always smaller than
the construction of Liu et al. [LYZ+21] since in the latter, every recursion step, compared to
Valiant, has an additional pole.

3.2.2 The Optimized Version

We will now show how Liu et al. optimized their weak construction such that the EUG
becomes acyclic and its size is bounded by ∼ 3n log2(n). For each edge (u, rx) that connects
a node u of a Superpole with one of its recursion points rx (where x denotes the sub EUG
G x in which rx is a pole), we replace this edge by an edge (u, w) with w being the unique
successor of rx in G x . We proceed analogously with edges connecting recursion points to
nodes in a Superpole and replace them by edges connecting the predecessor of the recursion
point to the node. Because all recursion points are short-circuited, we can remove them.
This saves us k nodes per k-Way Superpole. A depiction of this procedure can be seen in
Figure 3.5a on page 32.

Note that after short-circuiting the weak Liu EUG G, there are no cycles left in any Superpole
of G. Thus, this optimized EUG is acyclic.

Definition 3.2.2 (Liu EUG). A Liu EUG is a short-circuited weak Liu EUG, i.e., it is given by
Algorithm 7 on page 31 (SHORTCIRCUIT) for a weak Liu EUG G and denoted by LIU(P, k) for
pole set P and split parameter k, resp. LIU(n)k for n poles if the concrete poles are not relevant
for the statement.

The following theorem shows that to edge-embed Γ1 graphs into a Liu EUG, it is sufficient
to edge-embed the graph into the weak Liu EUG (by Algorithm 3), and then, replace the
short-circuited edges.

30

3 Edge-Universal Graph Constructions

Algorithm 7: SHORTCIRCUIT(G)

Input : Γ1(n) weak Liu EUG G = (V, E, P, G∗, G1, ..., Gk)
Output : Γ1(n) Liu EUG G = (V, E, P, G∗, G1, ..., Gk)

1 if V = ∅ :
2 return (∅,∅, ...)

3 foreach (u, v) ∈ E :
4 if u ∈ s and v is recursion point for some Superpole s ∈ G∗ :
5 G x ← the EUG in which v is a pole
6 E← E \ {(u, v)}
7 w← Γ−Gx (v)
8 E← E \ {(v, w)}
9 E← E ∪ {(u, w)}

10 else if u is recursion point for some Superpole s ∈ G∗ and v ∈ s :
11 G x ← the EUG in which u is a pole
12 E← E \ {(u, v)}
13 w← Γ+Gx (u)
14 E← E \ {(w, u)}
15 E← E ∪ {(w, v)}

16 remove all recursion points from G
17 for i← 1 to k :
18 G i ← SHORTCIRCUIT(G i)

19 return G

Theorem 4 (cf. [LYZ+21, Theorem 4]). LIUk(n) is an EUG for Γ1(n) with size bounded by

|SPk| − k
k log2(k)

n log2(n) +O(n).

Proof (cf. [LYZ+21, Theorem 4]). Let G = (V, E, P, G∗, G1, ..., Gk) be a weak Liu EUG for Γ1(n).
Let G′ = (P ′, E′) be the order preserving graph to be embedded and ψ: E′ → PG the
corresponding edge-embedding of G′ into G by Theorem 3. We need to show that we can
short-circuit each recursion point. So consider the u-v-path ψ(e′) in G for e′ ∈ E′.

Assume that along the path a recursion point r for some Superpole si ∈ G∗ is used. Then, this
recursion point is a pole in a sub EUG G x for some x ∈ [k]. Because ψ(e′) can not start or
end in a recursion point, there are edges (q, r) and (r, t) on the path for q, t ∈ V . Note that
by construction, r has exactly two ingoing eges (q1, r) with q1 ∈ si and (q2, r) with q2 ∈ G x .
Analogously, r has exactly two outgoing edges (r, t1) with t1 ∈ si and (r, t2) with t2 ∈ G x .
We need to show that either q = q1 ∧ t = t2 or q = q1 ∧ t = t2 because these are the options
left after short-circuiting G.

31

3 Edge-Universal Graph Constructions

pi

pi+1

(in/out) jl (in/out) jr

pi+2

pi+3

(in/out) j+1
l (in/out) j+1

r

. . .

. . .
.

.

.

(a) Short-circuiting Liu et al.’s (weak) construction
with 2-Way split. Edges in red are added while

edges and nodes in gray are removed.

p1

p2

p3

p4

p5

p6

p7

p8

(b) Liu et al.’s 2-Way-Split construction for 8
poles without first and last node of each

EUG and sub EUG .

Figure 3.5: Short circuiting Liu et.al.’s weak construction.

Case 1: r is used as an output recursion point, i.e., q = q1
Then, t = t2 because t = t1 would imply that we use an recursion point as an intermediary
node inside the Superpole si. This would contradict our assumption on the Superpole
edge-embedding.

Case 2: r is used as an input recursion point, i.e., q = q2
Then, t = t1 because t = t2 would imply that there exists a path in the corresponding
edge-embedding ψGx

that uses a pole as an intermediary node because r is a pole in G x .
Again, this would contradict our assumption on the Superpole edge-embedding.

Thus, we can replace the edges (q, r) and (r, t) in ψ(e′) by (r, t). Note that this preserves the
edge-disjointness of the paths. Doing this for every edge e′ ∈ E′, we end up with a correct
edge-embedding for SHORTCIRCUIT(G).

32

3 Edge-Universal Graph Constructions

p1

p2

(in/out)1l (in/out)1r

p3

p4

(in/out)2l (in/out)2r

p5

p6

(in/out)3l (in/out)3r

p7

p8

(in/out)4l (in/out)4r

(in/out)1l r(in/out)1l l

(in/out)2l r(in/out)2l l

(in/out)1r l (in/out)1r r

(in/out)2r l (in/out)2r r

Figure 3.6: Liu’s 2-Way-Split construction for 8 poles. The recursion points in gray are left
for an easier comparison with the weak version. Note that the first and last node
of each EUG and sub EUG are not needed.

By Proposition 3, it holds |G| ≤ |SPk|
k log2(k)

n log2(n) +O(n). The number of Superpoles in each
iteration i was given by n̄i in Lemma 3. Thus, the total number of Superpoles in G is bounded
from below by

x−1
∑︂

i=0

ki n̄i + kx =
x−1
∑︂

i=0

ki⌈
n

ki+1
⌉+ kx ≥

x−1
∑︂

i=0

ki n
ki+1

=
x−1
∑︂

i=0

n
k
= x

n
k

(3.4)

with x = ⌈logk(n)− 1⌉. Thus, (3.4) becomes

⌈logk(n)− 1⌉
n
k
≥

n log2(n)
k log2(k)

− 2
n
k
=

n log2(n)
k log2(k)

−O(n).

Since we additionally remove k recursion points per Superpole, we get

|SHORTCIRCUIT(G)|= |G| − k
n log2(n)
k log2(k)

+O(n)≤
|SPk| − k
k log2(k)

n log2(n) +O(n).

33

3 Edge-Universal Graph Constructions

In particular, if k = 2, we get a bound of 1.5n log2(n) + O(n) for a Γ1(n) Liu EUG and
3n log2(n) +O(n) for the merged Γ2(n) Liu EUG .

34

4 Support for Multi-Input Gates

In this chapter, we focus on extending the already seen constructions from Chapter 3 to
support multi-input gates. The first approach is based on the idea of [Val76][SS08, §4.3] and
described in Section 4.1. Our new proposed dynamic construction is presented in Section 4.2.
In Section 4.3, we describe a generalized Universal Gate construction for arbitrary high input
gate sizes with fanin 2. Note that this Universal Gate construction is used in both approaches
for multi-input gates.

4.1 The Fixed Edge-Universal Graph Construction of [Val76][SS08,
§4.3]

Assume we want to edge-embed a graph with fanin ρ. The idea of this construction is to
mergeρ instances of Γ1 EUGs into a Γρ EUG. This idea was originally mentioned in [Val76] and
practically deployed in [SS08, §4.3] along with two other multi-input gate UC constructions.
The advantage of this construction is that each Universal Gate supports ρ inputs and ρ
outgoing wires, which is why we call this the "fixed construction". It also has asymptotic
optimal size and leaks less information than our new construction (cf. Section 4.2). We use
the state-of-the-art construction of [LYZ+21] as our underlying EUG.

Corollary 4. An EUG for Γρ(n) for ρ ∈ N≥2 can be constructed with size at most

1.5ρn log2(n) +ρO(n).

Proof. Construct ρ instances of LIU(n)2 and merge them. By Corollary 3, this yields an EUG
for Γρ(n) with size bounded by 1.5ρn log2(n) +ρO(n).

Note that the size of this construction is directly dependent on the fanin ρ. Our following
construction is only dependent on the number of gate inputs inputs exceeding the limit of 2
inputs per gate. But, Section 4.2 shows that this comes with a trade-off in privacy.

35

4 Support for Multi-Input Gates

4.2 Our Dynamic Edge-Universal Graph Construction

Because we want to use dynamic multi-input gates, we need to modify our definition of the
graphs that can be edge-embedded. In particular, we have to define the maximum number
of inputs for each gate before constructing the EUG (resp. the UC). Note that the concrete
construction depends on these parameters together with the number of inputs, gates, and
outputs. Therefore, the "anonymity" of the function is only guaranteed within this set of
functions, i.e., all functions respecting above limitations can be embedded in the same UC
(with different programming bits). Thus, they can not be distinguished when using a secure
Two-Party Computation protocol. More formally, let f be a Boolean function and G′ the graph
that results from converting this Boolean function into a Boolean circuit. Sort G′ topologically,
convert it to a circuit with fanout 2 by using copygates, and let P+ be the vector indicating
how many inputs each gate (in topological order) can use. Then, our construction guarantees
that f can not be distinguished from functions with the same number of inputs, number of
gates, number of outputs, and same vector P+ for the gate input sizes (cf. Definition 4.2.1).
Note that the fixed construction [Val76][SS08, §4.3] guarantees this with the restriction
of P+ = 1ρ, where 1 denotes the vector where each entry is 1, and ρ denotes the fanin
of the circuit, i.e., only the number of inputs, gates, outputs, and the maximum used gate
input size is leaked. This means that the fixed construction always leaks less information,
unless P+ = 1ρ. Therefore, our construction can also be seen as a Semi-Private Function
Evaluation scheme. This is sufficient in many applications as [PSS09; GKSS19] show, but
keep in mind that there can be situations where this is not secure. The amount of leakage can
be reduced to some extent by using a maximum gate input size higher than needed. However,
this increases the size of the resulting UC.

To formally capture the set of graphs that our new construction can edge-embed, we need
the following definition.

Definition 4.2.1 (ΓP+,P−(n)). Let G = (V, E) be a directed acyclic graph with topologically
ordered V := {v1, v2, ..., vn} and P+, P− ∈ Nn. Then G ∈ ΓP+,P−(n) if:

• |V | ≤ n,

• δ+(vi)≤ P+i ∧δ
−(vi)≤ P−i ∀ i ∈ [n].

If P+/− = 1ρ for some ρ ∈ N, we write ρ instead of 1ρ.

In this sense, Corollary 4 yields a Γρ,ρ(n) EUG. In the following, we describe our dynamic
multi-input gate construction. An example of the whole EUG creation and embedding process
is depicted in Figure 4.1 on page 37. The explicit creation of the used auxiliary graph is given
by Algorithm 8 on page 38.

36

4 Support for Multi-Input Gates

v1 v2 v3 v5v4

v6

(a) Original graph

v1 v2 v3 v5v4

v6

u6,1 u6,2

(b) Corresponding auxiliary graph

p1

p2

p3

p4

p5

p6

p7

p8

(c) Edge-embedding of the original graph. First, the edges from the auxiliary graph are embedded.
Then, edges in gray are removed from the EUG, while dashed edges are added to the EUG, resp.
to the edge-embedding. The result is an edge-embedding for the original graph. Then, we can

replace the ingoing edges to p6 by directed edges to the multi-input pole p8. The auxiliary pole p7
becomes a Y-Switch that only forwards the orange wire.

Figure 4.1: Example of our dynamic multi-input gate construction.

37

4 Support for Multi-Input Gates

Algorithm 8: AUXILIARYGRAPH(G)
Input : G = (V, E) ∈ ΓP+,2(n)

Output : Ḡ = (V̄ , Ē) ∈ Γ2(n+∆) with ∆=
n
∑︁

i=0
max{⌈P+i −2

2 ⌉, 0}

1 Ḡ = (V̄ , Ē)← (V,∅)
2 foreach vi ∈ V :
3 j← 0
4 foreach e = (w, vi) ∈ E :
5 if j ≥ 2 :
6 if j ≡ 0 (mod 2) :
7 V̄ ← V̄ ∪ {ui, j

2
}

8 Ē← Ē ∪ {(w, ui,⌈ j
2 ⌉
)}

9 else
10 Ē← Ē ∪ {e}

11 j← j + 1

The idea of our construction is the following:
We begin by constructing an auxiliary graph Ḡ. For each pole that has more than two incoming
edges, we create an auxiliary pole for each two additional inputs. Then, we replace all edges
to the original pole, up to the first 2 edges, by edges to the auxiliary poles. The purpose of the
auxiliary poles is to forward their inputs to the original multi-input pole. The resulting EUG U
then guarantees that there can be a path from any pole with lower order to the corresponding
auxiliary poles. Note that because we merge 2 Γ1 EUGs, each auxiliary pole always has two
inputs. If there is a multi-input gate with an odd number of inputs, there will be one auxiliary
pole in Ḡ with only one input. Nevertheless, the corresponding auxiliary pole in U will have
two inputs, so we can not directly forward the inputs of this pole.

One option is to always forward both inputs to the multi-input gate, but this means that the
multi-input pole has one input more than it actually needs. This can be solved by padding
the function bits such that this input is ignored, but then we need a bigger universal gate.
Since the number of inputs to each pole is public anyway and the size of the Universal Gates
grows exponentially with its inputs (cf. Proposition 4), we circumvent this problem by a
small trick.

If the auxiliary pole has 2 inputs in Ḡ, we can just replace all edges to the auxiliary pole by
direct edges to the corresponding multi-input pole in the EUG and remove the auxiliary pole.
If the auxiliary pole has only one input in Ḡ, we replace the auxiliary pole by a Y-Switch and
set its control bit such that the desired input is forwarded.

Theorem 5. Let P+ ∈ Nn. Then, there exists an EUG for ΓP+,2(n) with size bounded by

3(n+∆) log2(n+∆) +O(n+∆),

38

4 Support for Multi-Input Gates

where ∆ :=
n
∑︁

i=0
max{⌈P+i −2

2 ⌉, 0}.

Proof. Let G = (V, E) ∈ ΓP+,2(n) be the graph to be embedded in an EUG. W.l.o.g. assume
that V := {v1, v2, ..., vn} is in topological order with possibly dummy nodes if |V |< n.

Step 1: Construct a Γ2(n+∆) graph using auxiliary poles for nodes with indegree higher
than 2:
Set Ḡ = (V̄ , Ē) = AUXILIARYGRAPH(G) ∈ Γ2(n+∆) (Algorithm 8). Note that the "relative topo-
logical order" is maintained, i.e., ηḠ(vi)< ηḠ(vi+1) ∀i ∈ [n]. Furthermore, we can choose ηḠ
such that the topological order of V̄ has the form (..., vi , ui+1,1, ...,u

i+1,⌈ deg+(vi+1)−2
2 ⌉

, vi+1, ...) for

all i ∈ [n], i.e., the auxiliary poles ui, j for j ∈ [⌈deg+G(vi)−2
2 ⌉] are directly before the original

pole vi if auxiliary poles are needed.

Step 2: Create a Γ2(n+∆) EUG U = (VU , EU , P,U∗,U1,U2) with pole set P = V̄ and edge-
embed Ḡ into it:
We do this by creating a Liu EUG U with pole set V̄ and split parameter 2. Then, we
merge two instances of it. By Theorem 3 and Corollary 3, this yields a Γ2(n+∆) EUG of
size at most 3(n+∆) log2(n+∆) +O(n+∆). Edge-embedding Ḡ into U (by Theorem 4)
yields ψ: Ē→ PU .

Step 3: Adjust U to get the final EUG Ū = (V Ū , EŪ , V, Ū∗, Ū1, Ū2):
Iterate through all auxiliary poles of U and do the following: Let ui, j be an auxiliary pole

for vi for i ∈ [n], j ∈ [⌈deg+G(vi)−2
2 ⌉]. If the auxiliary pole forwards two inputs (in Ḡ), remove

all outgoing edges from the auxiliary pole and replace each of them with an edge connecting
the auxiliary pole to the original multi-input pole, i.e., remove each (ui, j , w) ∈ EU for w ∈ VU

and replace it by (ui, j , vi). This yields two edges (ui, j , vi) per auxiliary pole ui, j. Thus, EU

becomes a multi set.

If the auxiliary pole only forwards one input (in Ḡ), remove all outgoing edges, and only
add one edge connecting the auxiliary pole to the original multi-input pole, i.e., add the
edge (ui, j , vi) to U . The graph that results from modifying U in the just described way is
denoted by Ū .

To show that Ū is a ΓP+,2(n) EUG, we need to define an edge-embedding ψ̄ from G into Ū :
Note that for edges e = (vi , vl) ∈ G \ Ḡ, i.e., edges whose endpoints are not auxiliary poles, ψ
already yields edge-disjoint vi-vl -paths, and we can set ψ̄(e) =ψ(e) for those edges.

Now consider edges edges e = (vi , vl) ∈ G ∩ Ḡ, i.e., the endpoints of those edges are trans-
formed into an auxiliary pole in Ḡ. For each e, there is exactly one ē = (vi , ul, j) ∈ Ḡ

for j ∈ [⌈deg+G(vl)−2
2 ⌉] (line 8 in AUXILIARYGRAPH). Now set ψ̄(e) =ψ(ē) + (ul, j , vl) for one of

the possibly two edges (ul, j , vl) that were added to Ū before. Obviously, this yields a vi-vl -path.
Since there are at most two edges connecting to an auxiliary pole in Ḡ, we can choose a unique
last edge for each path. Because the paths in the image of ψ were already edge-disjoint, also
the paths in the image of ψ̄ are edge-disjoint. Thus, ψ̄ is an edge-embedding of G into Ū .

39

4 Support for Multi-Input Gates

Once the EUG is created, we can remove, resp. replace, the auxiliary poles as described
before because they are not needed anymore in the UC.

4.3 Transforming a Multi-Input Edge-Universal Graph into a
Universal Circuit

Now that we can edge embed ΓP+,P−(n) graphs into our EUG, we have to deal with the
translation of the EUG and the edge-embedding into a UC. One problem that arises with all
constructions is that, by default, secure Two-Party Computation protocols like Yao’s garbled
circuits or Goldreich-Micali-Wigderson [Yao86; GMW87] only support gates with two inputs.
Hence, we can not directly convert our poles with multi-input gates into a suitable circuit.
Furthermore, using only 2-input AND gates preserves the ability to use the resulting UC in all
standard garbled circuits STPC schemes like the state-of-the-art garbling scheme of [RR21]
without further modification. The scheme of [RR21] has a communication complexity of
1.5κ+5 bits per AND gate, where κ denotes the security parameter (usually κ = 128). It also
uses the Free XOR technique [KS08b]. Therefore, XOR gates can be evaluated without any
communication effort. Note that Yao’s garbled circuits can be extended to support multi-input
gates like in [MNPS04], which was already used in the multi-input gate UC construction
of [SS08]. This approach would further reduce the needed communication, but there are
only exactly n Universal Gates and O(n log n) X- and Y-Switches such that this improvement
would be marginal. Thus, we decided to use only 2-input gates which are supported by all
STPC protocols.
Note that all other nodes, i.e. the X- and Y-Switches, are not affected by our construction
and have the same number of inputs and outputs as in the original construction. We use a
generalized Universal Gate construction supporting arbitrary many inputs. Note that any
k-input Boolean gate can be described by a lookup table with 2k entries. Hence, we can use a
2k-to-1 multiplexer for each Universal Gate with k inputs to simulate an k-input Boolean gate.
Then, the multiplexer selects the right lookup table entry depending on the input bits.

Definition 4.3.1 (2k-to-1 multiplexer). Let k ∈ N. A 2k-to-1 multiplexer M is a Boolean circuit
with 2k function table bit inputs c = (c0, ..., c2k−1) ∈ {0,1}2

k
and k programming bit inputs

p = (p0, ..., pk−1) ∈ {0,1}k such that

M(c, p) = c[p] ∀ c ∈ {0, 1}2
k
, p ∈ {0, 1}k,

where [p] denotes the decimal number of the binary number p0...pk−1, i.e.,

[p] =
k−1
∑︂

i=0

pi2
k−1−i .

40

4 Support for Multi-Input Gates

To build a 2k-to-1 multiplexer Mk, we use a tree of 2k − 1 2-to-1 multiplexers. This is
done recursively by using the output of two 2k−1-to-1 multiplexers as the input to a 2-to-1
multiplexer. The construction is depicted in Figure 4.2.

(a) 2-to-1 multiplexer M1 (b) 2k-to-1 multiplexer Mk

Figure 4.2: The 2k-to-1 multiplexer construction. The control bits c0 and c1 are the lookup
table entries for inputs starting with 0, resp. with 1 (cf. proof of Proposition 4).

Proposition 4. A 2k-to-1 multiplexer can be realized by a Boolean circuit with 2k−1 AND gates
and 2(2k − 1) XOR gates.

Proof. Let c = (c0, ..., c2k−1) ∈ {0, 1}2
k

be the function table bits and p = (p0, ..., pk−1) ∈ {0, 1}k

the programming bits for k ∈ N. We use the construction of Figure 4.2 and prove its correct-
ness by induction over k.

Induction base: k = 1
If p0 = 0, then M1(co, c1, p0) = ((c0⊕c1)∧0)⊕c0 = 0⊕c0 = c0. If p0 = 1, then M1(co, c1, p0) =
((c0 ⊕ c1)∧ 1)⊕ c0 = c0 ⊕ c1 ⊕ c0 = c1. Thus, M1 is a 2-to-1 multiplexer with one AND gate
and two XOR gates (cf. Figure 4.2).

Induction step: k− 1⇝ k

Let Mk−1 be the 2k−1-to-1 multiplexer given by the induction hypothesis. Let c0 ∈ {0, 1}2
k−1

be the function table bits of c, where the first input is 0, i.e., all the bits c[0,x1,x2,...,xk−1] for

x1, x2, ..., xk−1 ∈ {0, 1}. Analogously, let c1 ∈ {0, 1}2
k−1 be the function table bits, where the

first input is 1. Then

Mk(c, p) :=M1(Mk−1(c0, p1, ..., pk−1),Mk−1(c1, p1, ..., pk−1), p0)

is a 2k-to-1 multiplexer: By induction hypothesis on Mk−1, the two 2k−1-to-1 multiplexers
return c[0,p1,...,pk−1] and c[1,p1,...,pk−1]. Since M1 is a 2-to-1 multiplexer, it outputs c[p0,p1,...,pk−1].
Therefore, Mk is a 2k-to-1 multiplexer.

41

4 Support for Multi-Input Gates

The circuit size of Mk is given by two times the circuit size for Mk−1, which is each 2k−1 − 1
AND and 2(2k−1 − 1) XOR gates plus the one AND gate and two XOR gates from M1. This
results in 2(2k−1 − 1) + 1= 2k − 1 AND gates and 2 · 2(2k−1 − 1) = 2(2k − 1) XOR gates in
total.

42

5 Implementation & Experimental Evaluation

In this chapter, we describe our implementation (Section 5.1), the test setup, and the used
circuits (Section 5.2). Then, we benchmark our multi-input gate UC construction (Section 5.3)
and propose an improved hybrid construction along with benchmarks in Section 5.4.

We will benchmark our dynamic multi-input gates UC construction (cf. Section 4.2) and com-
pare it with the usual approach of using circuits with at most binary gates and with the fixed
multi-gate input approach (Section 4.1). All results in this chapter use the EUG construction
of Liu et al. [LYZ+21] to construct the underlying Γ1 EUGs. For the sake of completeness,
there is also a smaller set of benchmarks that use Valiant’s 2-Way construction [Val76] as
the underlying EUG in Appendix A.1. Because these results are analogous to the following
results with Liu et al.’s construction, only with larger size, we refrain from presenting them
in the main part of this work. Compilation times of the UCs and their programmings can also
be found in Appendix A.2.

5.1 About The Implementation

Since the 2-Way construction (split parameter k = 2) is the most efficient in the construction
of Liu et. al [LYZ+21], we only implemented this variant of the EUGs. Our implementation
supports arbitrary high gate input sizes, but keep in mind that the size of the Universal Gates
grows exponentially in its number of inputs (cf. Proposition 4).

Our implementation is using C++ (version C++17) and is compiled with gcc version 9.3.0
(Gnu Compiler Collection) under Linux Mint 20.1 running kernel 5.11.0-051100-generic.

Let C denote the circuit to be embedded and ρ the maximum fanin of the circuit. The UC
compilation works in the following way:

1. Parse the circuit:
The circuit is input in Secure Hardware Definition Language (SHDL) [MNPS04] or Bench
format 1, possibly converted from Bench to SHDL, and parsed into the internal graph rep-
resentation. If the fanout of the graph is higher than the allowed fanout (ρ for the fixed
construction, 2 for the dynamic construction), the fanout is reduced by copy gates. The
resulting graph is denoted by G. If we want to use dynamic multi-input gates, the auxiliary
graph as in Theorem 5 is generated (cf. Algorithm 8). In this case, we will denote the auxiliary

1The Bench format was used as a standard benchmark circuit description for ISCAS’85, ISCAS’89, and ISCAS’99.

43

5 Implementation & Experimental Evaluation

graph by G and the former graph with possibly reduced fanout by Ḡ. This gives us a mapping
of poles of Ḡ to poles of auxiliary graph G.

2. Split G into multiple Γ1 graphs:
This is done by coloring the edges (cf. Corollary 2). If, we use the dynamic construction, we
get 2 Γ1 graphs. If we use the fixed construction, this yields ρ Γ1 graphs.

3. Create an Γ1 EUG for each Γ1 graph:
For each Γ1 graph from the previous step, we create a Γ1 EUG. Possible EUGs are
Valiant’s EUG [Val76] and the EUG of Liu et al. [LYZ+21] with 2-Way split.

4. Edge-embed the Γ1 graphs and merge them:
Each Γ1 graph is edge-embedded into the corresponding Γ1 EUG. This edge-embedding is
coded directly into the control bits of the X- and Y-Switching nodes of the EUG. We do
not construct an explicit edge-embedding map ψ because we only need the control bits
to create the UC and the programming bits. The concrete algorithm (Algorithm 3) uses
a slightly modified version of the edge-embedding algorithm in [GKS17] to also support
the construction of Liu et al. Then, the Γ1 EUGs are merged into a Γρ EUG (for the fixed
construction) or into a Γ2 EUG (for the dynamic construction).

5. Do basic optimizations and check the correctness of the edge-embedding:
We remove edges connecting into an input pole since they will never be used and replace
nodes just forwarding by wires. Then, we possibly remove isolated nodes or change X- to
Y-Switching nodes if one edge was removed before. Switches that are not set yet are randomly
set. At the end, we check the correctness of the edge-embedding by checking for each edge
(u, v) in G whether there is a path leading from u to v (by backtracking according to the
control bits).

6. Set the gates of the EUG:
If we use the dynamic construction, we replace the auxiliary poles by wires connecting directly
to the actual pole or by a Y-Switching node if only one input is forwarded. Analogously to
step 5, we check the correctness of the edge-embedding now with respect to Ḡ. For each
node in G, we set the function bits of the corresponding EUG pole. Since the function bits
depend on the order of inputs, and there is no guarantee about the order, we determine the
order of inputs and set the function bits accordingly. This also involves padding the function
bits if the gate has more inputs than needed (e.g., in the fixed case, each gate supports the
maximum fanin of the circuit). Note that these additional inputs are likely to occur since each
Universal Gate outputs ρ (fixed construction) or 2 (dynamic construction) wires, independent
of whether they are used in G or not. The function bits are padded such that the additional
and undesired inputs are ignored.

7. Transform the EUG into a UC:
We topologically sort the EUG with the restriction that the circuit input occur before all other
nodes. This allows us to enumerate all nodes and assign numbers in ascending order to
the gate output wires. Each node (except for X-Switches) only has one output value, so all
outgoing wires of a node receive the same number. The X-Switches get two wire numbers,

44

5 Implementation & Experimental Evaluation

one for the left and one for the right output. Then, each node along with its ingoing and
outgoing wires is written into a circuit file, while the programming bits are written into a
separate programming bits file.

8. Check the correctness of the UC:
The correctness of the UC is checked by simulating the evaluation of the SHDL circuit and the
UC files for random inputs. This can be repeated arbitrarily often (default is 1) or skipped.
The check fails, if the outputs of both evaluations differ, otherwise the check passes.

5.2 Test Setup and Methodology

The used circuits can be found in Table 5.1. Their basic properties and sources can be found
in Table 5.2. Originally, all these circuits have only gates with at most two inputs. To create
equivalent circuits with higher gate input sizes, we used the circuit synthesis system abc 1

that allows Lookup Table (LUT)- or Field Programmable Gate Array (FPGA)-Mapping, i.e., it
converts sets of binary gates to LUTs/multi-input gates. We used the included FPGA-Mapper
by [CMCB07] using Priority Cuts, which can be used by the command "if -K <maximum
LUT size>". Additionally, we used the option "-a" for area-oriented mapping, which aims
to minimize the number of nodes and not the depth, and topologically sorted the resulting
circuit. We did not use any special circuit optimization for STPC purposes, but above option
yielded the best results in our cases. To remain consistent, we also used the FPGA-Mapper
for a maximum LUT size of 2.

Category Name Description
Arithmetic rca256 Ripple-Carry Adder with two 256-bit inputs.

rcmul64 Ripple-Carry Multiplier with two 64-bit inputs.
karatsuba64 Karatsuba multiplier with two 64-bit inputs.
rcsqr64 Ripple-Carry Squarer with one 64-bit input.

Distance md256 Manhattan distance between two two-dimensional 256-bit points.
ed64 Euclidean distance between two two-dimensional 64-bit points.

Crypto AES 128-bit AES encryption algorithm (with expanded input key).
DES 64-bit DES encryption algorithm (with expanded input key).
MD5 Compression function of the MD5 hash algorithm with 512-bit input.
SHA1 Compression function of the SHA-1 hash algorithm with 512-bit input.

Table 5.1: The circuits used in our benchmark.

1Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification,
Release 1.01. http://www.eecs.berkeley.edu/~alanmi/abc/

45

http://www.eecs.berkeley.edu/~alanmi/abc/

5 Implementation & Experimental Evaluation

Category Name Inputs Gates Outputs Source
Arithmetic rca256 512 1532 257 [DKS+17]

rcmul64 128 28032 128 [DKS+17]
karatsuba64 128 19813 128 [DKS+17]
rcsqr64 64 13981 128 [DKS+17]

Distance md256 1024 5627 257 [DKS+17]
ed64 256 30633 129 [DKS+17]

Crypto AES 1536 26085 128 [ST]1

DES 832 18589 64 [ST]1

MD5 512 14570 128 [ST]1

SHA1 512 30117 160 [ST]1

Table 5.2: Basic properties of the used circuits.

Note that the circuits we embed must have fanout bounded by 2 (in the case of the binary or
dynamic approach), resp. ρ, where ρ denotes the maximum gate input size (for the fixed
multi-input gates approach). The sizes and gate distributions of all LUT-mapped circuits
can be found in Figures 5.2, 5.6, and 5.10. Since we now have Universal Gates of different
size, we can not just count the number of nodes of the EUG to compare the implementations.
Therefore, we counted the number of AND gates that are necessary to instantiate the building
blocks of the UC (cf. Table 5.3). Note that due to the Free XOR technique [KS08b] for Yao’s
garbled circuits [Yao86], XOR gates can be evaluated without communication effort.

Building block AND gates XOR gates
X-Switching block [KS08b] 1 3
Y-Switching block [KS08b] 1 2
Universal Gate with k ≥ 2 inputs (Prop. 4) 2k − 1 2k+1 − 2

Table 5.3: The needed AND and XOR gates per building block in our UC constructions.

1These circuits are transformed into SHDL format by the included Bristol-to-SHDL converter of the ENCRYPTO
open source UC compiler https://github.com/encryptogroup/UC [AGKS20]

46

https://github.com/encryptogroup/UC

5 Implementation & Experimental Evaluation

In addition to our real life circuits, we also use Algorithm 9 to create synthetic circuits.

Algorithm 9: CREATERANDOMCIRCUIT(nI , nG , nO,ρ+,ρ−)
Input : Number of inputs, gates and outputs nI , nG , nO,

fanin ρ+, fanout ρ−

Output : Graph G = (V, E) with nI inputs, nG gates, nO outputs, fanin ρ+ and fanout
ρ−

1 n← nI + nG + nO
2 create vertices v1, ..., vn
3 G = (V, E)← ({v1, ..., vn},∅)
4 for i← 1 to nI + nG :
5 for k← 1 to ρ− :

6 j
$
← {i + 1, . . . , n} // choose uniformly random

7 if δ+G(v j)< ρ+ :
8 E← E ∪ {(vi , v j)}

9 if i > nI :
10 set random function bits for vi

11 else
12 mark vi as input

13 for i← nI + nG + 1 to n :
14 set random function bits for vi
15 mark vi as output

16 return G

The goal of these synthetic circuits is to get circuits with a high variance in gate input sizes.
Thus, we do not need real random graphs in the sense of a uniformly random chosen circuit
out of all valid circuits. Instead, for each node we try to connect it to ρ− randomly chosen
nodes with higher topological order. Only if those target nodes have less than ρ+ inputs, we
add this wire. This is not a uniformly random chosen circuit.

47

5 Implementation & Experimental Evaluation

5.3 Universal Circuit Sizes

2LUT
3LUT
4LUT
5LUT
6LUT
7LUT
8LUT

87506 (0.0%)

55043 (-37.1%)

73213 (-16.3%)

97689 (+11.6%)

130290 (+48.9%)

178852 (+104.4%)

259703 (+196.8%)

87506 (0.0%)

51710 (-40.9%)

51729 (-40.9%)

53389 (-39.0%)

53550 (-38.8%)

54156 (-38.1%)

54687 (-37.5%)

(a) 256-bit Ripple-Carry Adder

2LUT
3LUT
4LUT
5LUT
6LUT
7LUT
8LUT

1950470 (0.0%)

996591 (-48.9%)

1201435 (-38.4%)

1437931 (-26.3%)

1922322 (-1.4%)

2715246 (+39.2%)

4126158 (+111.5%)

1950470 (0.0%)

1202742 (-38.3%)

1422159 (-27.1%)

1429125 (-26.7%)

1429368 (-26.7%)

1429803 (-26.7%)

1563033 (-19.9%)

(b) 64-bit Ripple-Carry Multiplier

2LUT
3LUT
4LUT
5LUT
6LUT
7LUT
8LUT

1327297 (0.0%)

687968 (-48.2%)

817064 (-38.4%)

1036915 (-21.9%)

1299474 (-2.1%)

1862163 (+40.3%)

2844887 (+114.3%)

1327297 (0.0%)

855418 (-35.6%)

968068 (-27.1%)

986201 (-25.7%)

989728 (-25.4%)

1004924 (-24.3%)

1060571 (-20.1%)

(c) 64-bit Karatsuba Multiplier

2LUT
3LUT
4LUT
5LUT
6LUT
7LUT
8LUT

909622 (0.0%)

504402 (-44.5%)

570822 (-37.2%)

720827 (-20.8%)

920829 (+1.2%)

1313502 (+44.4%)

2010365 (+121.0%)

909622 (0.0%)

576597 (-36.6%)

664733 (-26.9%)

720253 (-20.8%)

720256 (-20.8%)

720930 (-20.7%)

754890 (-17.0%)

(d) 64-bit Ripple-Carry Squarer

Fixed (§4.1) Dynamic (§4.2)

Figure 5.1: Arithmetic: Comparison of the UC sizes (number of AND gates) needed to embed
arithmetic operations w.r.t. different LUT sizes. The vertical lines show the results
of the binary approach. The number in braces is the relative improvement over
the binary construction.

The benchmarks for arithmetic operations in Figure 5.1 show that in every circuit, the size
of the UC can be reduced by more than 40% by using multi-input gates. The sweet spot
for the circuit fanin is between 3 and 4 for all cases and holds for the fixed as well as the
dynamic approach. Especially the fixed multi-input approach is interesting in two ways.
The positive observation is that, in contrast to the dynamic approach, we achieve the same
level of anonymity (up to the maximum fanin of the circuit) as with the binary approach,
while reducing the size of the UC by 45% on average for the arithmetic circuits (when using
the optimal LUT size). Most notably, we could reduce the size of the 64-bit Ripple-Carry
Multiplier by 49%. However, this only holds for small LUT sizes up to 5. Using higher
LUT sizes drastically increases the number of nodes such that the resulting UC becomes
larger than the UC constructed by the standard binary construction. On the other hand, the
dynamic construction does not show this behavior and always improves on the usual binary
construction on average by 38% when used with the best possible LUT size and by 25% over
all used LUT sizes. This shows that our dynamic construction is more consistent, but we

48

5 Implementation & Experimental Evaluation

expected the dynamic construction also to be more efficient than the fixed construction since
it leaks more information.

2LUT 3LUT 4LUT 5LUT 6LUT 7LUT 8LUT
0

500

1,000

1,500
1,532

512 511 509 508 506 505

1 2 3 4

5 6 7 8

(a) 256-bit Ripple-Carry Adder

2LUT 3LUT 4LUT 5LUT 6LUT 7LUT 8LUT
0

1

2

3

·104

28,032

12,096

8,127 8,063 8,058 8,051 7,989

1 2 3 4

5 6 7 8

(b) 64-bit Ripple-Carry Multiplier

2LUT 3LUT 4LUT 5LUT 6LUT 7LUT 8LUT
0

0.5

1

1.5

2

·104

19,813

8,420

6,216 6,045 6,000 5,944 5,865

1 2 3 4

5 6 7 8

(c) 64-bit Karatsuba Multiplier

2LUT 3LUT 4LUT 5LUT 6LUT 7LUT 8LUT
0

0.5

1

1.5

·104

13,981

6,108

4,212 4,088 4,081 4,068 4,008

1 2 3 4

5 6 7 8

(d) 64-bit Ripple-Carry Squarer

Figure 5.2: Arithmetic: Distribution of the gate input sizes w.r.t. different LUT sizes. The
different colors represent the used gate input sizes. Note that this figure only
counts the number of gates and does not weight a multi-input gate more than a
binary gate.

Figure 5.2 shows the distribution of the different LUT sizes for the arithmetic circuits. Sur-
prisingly, there is no almost circuit size reduction by allowing more than 4 gate inputs. The
possibility to use high LUT sizes was barely used by our FPGA-Mapper. Because this obser-
vation is extreme for the 256-bit Ripple-Carry Adder, we further analyzed this circuit and
its corresponding UCs. There is no significant size reduction by using more than 3 gate
inputs. On the other hand, because there are always some gates with the maximum LUT size,
the fixed multi-input gate construction has to support this gate input size for all Universal
Gates. This results in half of the UC consisting of the Universal Gates for the 8LUT case (cf.
Figure 5.3 on page 50). But even without the huge share of the Universal Gates, the fixed
multi input gate construction would be more than twice the size of the dynamic multi-input
construction in this case due to the merging of 8 Γ1 EUGs, where most of the wires are never
used.

49

5 Implementation & Experimental Evaluation

If the circuit size can further be reduced by using even higher LUT sizes, we suspect that the
dynamic construction will outperform the fixed construction in those situations. This can
be seen in the benchmarks with LUT sizes greater than 4 since in these cases the dynamic
construction profits extremely from not being directly dependent on the fanin. However, the
circuit synthesis suite used in our benchmark could not reduce the circuit sizes sufficiently
with high LUT sizes. But, we will see such a case with the DES circuit and very high LUT
sizes in Section 5.4.

45%
5%

50%

(a) Fixed (§4.1)

85%

7%
8%

X-Switching blocks
Y-Switching blocks
Universal Gates

(b) Dynamic (§4.2)

Figure 5.3: Ripple-Carry Adder: Share of the building blocks in the UC size (number of AND
gates) for the 256-bit Ripple-Carry Adder with LUT size 8.

Note that the fanout of the circuit to be embedded must be equal to the fanin of the circuit for
the fixed multi-input construction, resp. 2 for the dynamic multi-input construction. Since
the added copy gates are treated like usual gates by the EUG construction, this increases the
resulting UC size significantly. This is more severe with the dynamic construction because we
only merge two Γ1 EUGs. Thus, each Universal Gate in the dynamic construction natively
only supports two outgoing wires. The effect on the circuit size can be seen in Figure 5.4.

rca256-3LUT

rcmul64-3LUT

karatsuba64-3LUT

rcsqr64-3LUT

512

20,159

14,315

10,268

512

16,095

11,270

8,157

512

12,069

8,420

6,109

Fanout reduced to 2 Fanout reduced to Fanin Original

Figure 5.4: Arithmetic: Comparison between the original circuit sizes and the same circuits
after reducing the fanout. The used versions of the circuits are the ones that
yielded the smallest UC size using the fixed or dynamic approach. Note that
these are the circuit sizes before replacing wires by auxiliary poles in the dynamic
construction.

50

5 Implementation & Experimental Evaluation

2LUT
3LUT
4LUT
5LUT
6LUT
7LUT
8LUT

337811 (0.0%)

204005 (-39.6%)

229137 (-32.2%)

305497 (-9.6%)

412338 (+22.1%)

508099 (+50.4%)

755790 (+123.7%)

337811 (0.0%)

201726 (-40.3%)

184969 (-45.2%)

185274 (-45.2%)

186262 (-44.9%)

277228 (-17.9%)

278390 (-17.6%)

(a) 256-bit Manhattan Distance

2LUT
3LUT
4LUT
5LUT
6LUT
7LUT
8LUT

2104071 (0.0%)

1154170 (-45.1%)

1329199 (-36.8%)

1658148 (-21.2%)

2181810 (+3.7%)

2965844 (+41.0%)

4490431 (+113.4%)

2104071 (0.0%)

1326727 (-36.9%)

1609786 (-23.4%)

1636955 (-22.2%)

1637570 (-22.2%)

1668818 (-20.7%)

1741718 (-17.2%)

(b) 64-bit Euclidean Distance

Fixed (§4.1) Dynamic (§4.2)

Figure 5.5: Distance: Comparison of the UC sizes (number of AND gates) needed to embed
Manhattan and Euclidean Distance w.r.t. different LUT sizes. The vertical lines
show the results of the binary approach. The number in braces is the relative
improvement over the binary construction.

The benchmarks for the Universal Circuits computing a distance (cf. Figure 5.5) draw a
similar picture as the prior ones. The best result for the Manhattan Distance is achieved
by the dynamic construction with a 45% size reduction compared to the standard binary
construction, while the UC for the Euclidean Distance can be reduced by 45% using the fixed
multi-input gate construction.

2LUT 3LUT 4LUT 5LUT 6LUT 7LUT 8LUT
0

2,000

4,000

6,000 5,627

2,557

1,792 1,789 1,782
1,529 1,526

1 2 3 4

5 6 7 8

(a) 256-bit Manhattan Distance

2LUT 3LUT 4LUT 5LUT 6LUT 7LUT 8LUT
0

1

2

3

·104

30,633

13,360

9,371 9,057 9,036 8,948 8,810

1 2 3 4

5 6 7 8

(b) 64-bit Euclidean Distance

Figure 5.6: Distance: Distribution of the gate input sizes w.r.t. different LUT sizes. The
different colors represent the used gate input sizes. Note that this figure only
counts the number of gates and does not weight a multi-input gate more than a
binary gate.

Again, there is only a little reduction in circuit size by allowing higher LUT sizes (cf. Figure 5.6).
In particular, the circuit size reduction from 6LUT to 7LUT is not sufficient for a UC size
reduction, while the reduction from 3LUT to 4LUT is sufficient. Figure 5.7 shows that a solely

51

5 Implementation & Experimental Evaluation

2LUT

3LUT

4LUT

5LUT

6LUT

7LUT

8LUT

5627

2557

1792

1789

1782

1529

1526

16881 (0.0%)

13819 (-18.1%)

17676 (+4.7%)

17807 (+5.5%)

18422 (+9.1%)

57699 (+241.8%)

58757 (+248.1%)

Number of gates Size for Universal Gates

Figure 5.7: Manhattan Distance: Number of AND gates needed to instantiate the gates of
the Manhattan circuit as Universal Gates w.r.t. different maximum LUT sizes. The
number in braces is the relative difference to the number of AND gates needed
for the Universal Gates with the binary construction (2LUT). Note that this is
before fanout reduction of the circuit, which would possibly add copy gates.

circuit size reduction is not enough to reduce the UC size if the LUT sizes become too big.
This is a problem because the size of the Universal Gates grows exponentially in its number
of inputs (cf. Proposition 4), which can be seen in the difference from 6LUT to 7LUT in
Figure 5.7. On the other side, the reduced number of gates in the 4LUT circuit is enough to
compensate for the increased Universal Gate sizes compared to the 3LUT circuit. Note that
the reduction of the circuit fanout will possibly further increase the number of gates, which
was not considered by our observations so far. This effect is similar to the arithmetic circuits
and can be seen in Figure 5.8.

md256-4LUT

ed64-3LUT

2,313

22,062

1,963

17,587

1,792

13,360

Fanout reduced to 2 Fanout reduced to Fanin Original

Figure 5.8: Distance: Comparison between the original circuit sizes and the same circuits
after reducing the fanout. The used versions of the circuits are the ones that
yielded the smallest UC size using the fixed or dynamic approach. Note that
these are the circuit sizes before replacing wires by auxiliary poles in the dynamic
construction.

52

5 Implementation & Experimental Evaluation

2LUT
3LUT
4LUT
5LUT
6LUT
7LUT
8LUT

1721094 (0.0%)

1519149 (-11.7%)

1540529 (-10.5%)

1736603 (+0.9%)

2229570 (+29.5%)

3100933 (+80.2%)

4751353 (+176.1%)

1721094 (0.0%)

1760502 (+2.3%)

1629555 (-5.3%)

1640651 (-4.7%)

1650996 (-4.1%)

1692352 (-1.7%)

1702572 (-1.1%)

(a) AES

2LUT
3LUT
4LUT
5LUT
6LUT
7LUT
8LUT

1275338 (0.0%)

1140963 (-10.5%)

1130037 (-11.4%)

1260987 (-1.1%)

1480341 (+16.1%)

1787605 (+40.2%)

2435499 (+91.0%)

1275338 (0.0%)

1287937 (+1.0%)

1164258 (-8.7%)

1170717 (-8.2%)

1051611 (-17.5%)

1006746 (-21.1%)

974733 (-23.6%)

(b) DES

2LUT
3LUT
4LUT
5LUT
6LUT
7LUT
8LUT

890005 (0.0%)

772764 (-13.2%)

827240 (-7.1%)

906004 (+1.8%)

1207749 (+35.7%)

1739737 (+95.5%)

2685315 (+201.7%)

890005 (0.0%)

898074 (+0.9%)

831924 (-6.5%)

815007 (-8.4%)

825962 (-7.2%)

838422 (-5.8%)

849459 (-4.6%)

(c) MD5

2LUT
3LUT
4LUT
5LUT
6LUT
7LUT
8LUT

2062486 (0.0%)

1675159 (-18.8%)

1705745 (-17.3%)

1875784 (-9.1%)

2371158 (+15.0%)

3346677 (+62.3%)

5062488 (+145.5%)

2062486 (0.0%)

1951521 (-5.4%)

1798392 (-12.8%)

1815150 (-12.0%)

1820037 (-11.8%)

1966535 (-4.7%)

2019026 (-2.1%)

(d) SHA-1

Fixed (§4.1) Dynamic (§4.2)

Figure 5.9: Cryptographic: Comparison of the UC sizes (number of AND gates) needed to
embed cryptographic algorithms w.r.t. different LUT sizes. The vertical lines
show the results of the binary approach. The number in braces is the relative
improvement over the binary construction.

While we could always achieve a large UC size reductions with the prior arithmetic and
distance circuits by using LUT sizes of 3 or 4, this no longer holds in such a scale for the
cryptographic circuits (cf. Figure 5.9). Using multi-input gates, we could reduce the size
of the AES embedding by 12% with the fixed construction, resp. by 5% with the dynamic
construction. The best result could be achieved with the DES circuit. In this case, the dynamic
construction with the 8LUT circuit achieves the smallest possible size, improving on the usual
binary construction by 24%.

Comparing Figure 5.10 to the gate size distributions of the prior circuits (cf. Figure 5.2 and
Figure 5.6), we again have the largest drop off going from 2LUT to 3LUT. For the DES circuit,
there is even a circuit size reduction for higher LUT sizes, which explains why the dynamic
construction is so efficient with a LUT size of 8.

53

5 Implementation & Experimental Evaluation

2LUT 3LUT 4LUT 5LUT 6LUT 7LUT 8LUT
0

1

2

·104

26,085

17,987

13,668
12,247 11,556 11,164 11,121

1 2 3 4

5 6 7 8

(a) AES

2LUT 3LUT 4LUT 5LUT 6LUT 7LUT 8LUT
0

0.5

1

1.5

2
·104

18,589

12,673

10,032
8,707

7,469
6,422

5,606

1 2 3 4

5 6 7 8

(b) DES

2LUT 3LUT 4LUT 5LUT 6LUT 7LUT 8LUT
0

0.5

1

1.5

·104

14,570

9,101
7,994

7,056 6,790 6,611 6,592

1 2 3 4

5 6 7 8

(c) MD5

2LUT 3LUT 4LUT 5LUT 6LUT 7LUT 8LUT
0

1

2

3

·104

30,117

18,273

14,519
12,989 12,501 12,240 12,037

1 2 3 4

5 6 7 8

(d) SHA-1

Figure 5.10: Cryptographic: Distribution of the gate input sizes w.r.t. different LUT sizes.
The different colors represent the used gate input sizes. Note that this figure
only counts the number of gates and does not weight a multi-input gate more
than a binary gate.

Figure 5.11 shows that the dynamic construction was able to yield the smallest UC for DES,
although many copy gates were used to reduce the fanout of the circuit. In this case, the
resulting circuit is more than two times the size of the circuit reduced to fanout 8 for the
fixed construction.

54

5 Implementation & Experimental Evaluation

SHA-1-3LUT

MD5-3LUT

DES-8LUT

AES-3LUT

33,957

16,083

14,185

30,228

24,403

11,742

5,949

22,284

18,273

9,101

5,606

17,987

Fanout reduced to 2 Fanout reduced to Fanin Original

Figure 5.11: Cryptographic: Comparison between the original circuit sizes and the same
circuits after reducing the fanout. The used versions of the circuits are the ones
that yielded the smallest UC size using the fixed or dynamic approach. Note
that these are the circuit sizes before replacing wires by auxiliary poles in the
dynamic construction.

2 3 4 5 6 7 8

1

2

3

4

5
·106

Fanin of the circuit

U
C

si
ze

Dynamic (§4.2), Fanout 2
Dynamic (§4.2), Fanout 4
Dynamic (§4.2), Fanout 6

Fixed (§4.1), Fanout 2
Fixed (§4.1), Fanout 4
Fixed (§4.1), Fanout 6

Figure 5.12: Random: Size of UCs when embedding random circuits with 1000 inputs,
10000 gates and 1000 outputs with different fanin and fanout. Solid lines are
the results for the dynamic construction. Dashed lines are the results for the
fixed construction.

Figure 5.12 demonstrates the potential of our dynamic construction if the circuits have highly
varying gate input sizes. Especially for the random circuit with fanin 8 and fanout 2, most
of the gates have few inputs, which is no problem for the dynamic construction as we only

55

5 Implementation & Experimental Evaluation

"pay" per input that exceeds the usual 2 inputs. On the other hand, each Universal Gate in
the fixed construction supports 8 inputs since this is the fanin. Therefore, 8 Γ1 EUGs have
to be merged. In this case, the size of the UC constructed by our dynamic construction is
less than a fifth of the UC size with the fixed construction. However, due to the merging of 8
EUGs, each Universal Gate also supports 8 outgoing wires. The tides turn once the fanout of
the circuit is large enough (fanout ≥ 6). At this point the dynamic construction must use
many copy gates to forward the outputs of gates with outdegree greater than 2.

The random circuits show that a high fanin is better suited for the dynamic construction
if there are enough gates with fewer inputs, while circuits with only little variation in the
LUT sizes and no outliers to the top are better embedded using the fixed construction. This
"rule of thumb" can be seen with random circuits with fanout 4 (lines in green). The fixed
construction is smaller up to a fanin of 6, while the dynamic construction is preferred with
fanins larger than 6.

5.4 An Improvement Attempt: The Hybrid Construction

Section 5.3 showed the advantages that both multi-input constructions offer over the standard
binary construction. However, depending on the situation, the dynamic construction is more
efficient than the fixed one or vice-versa. In particular, the fixed constructions struggles with
varying gate input sizes because each gate must support the highest indegree ρ, which results
in ρ Γ1 EUG mergings.

On the other hand, our dynamic construction suffers from the limited fanout of 2. Fig-
ures 5.4, 5.8 and 5.11 show that most circuits are almost doubled in size after reducing
the fanout to 2. Reducing the fanout exactly to the fanin still results in an overhead. But,
compared to the reduction to 2, the increase in size is drastically reduced. The worst case here
is the 64-bit Karatsuba Multiplier with a maximum LUT size of 3 that increases by 34%.

Thus, we try to combine both approaches to a so called hybrid construction. The idea is that
we use our new dynamic construction for Γ1 graphs, but merge it now k > 2 times. This
increases the minimum Universal Gate size to k, and we need to merge k Γ1 EUGs. But, this
decreases the need for copy gates since each gate now natively supports k outgoing edges.
We refrain from providing a correctness proof since the proof for the hybrid construction
is analogous to the proof for our basic dynamic multi-input gates construction. The only

difference is that we choose a Γk(n+ ∆̄) EUG for ∆̄ :=
n
∑︁

i=0
max{⌈P+i −k

k ⌉, 0} in the second step.

In order to only forward the desired number of inputs to the Universal Gates, we need a more
sophisticated construction than a simple Y-Switch for the auxiliary poles forwarding less than
k inputs.

Recall that the problem is that every auxiliary pole, by default, forwards exactly k wires,
where k is the number of Γ1 EUG mergings. To only forward some of the ingoing wires, we
use so called selection networks. These networks are small graphs which ensure that only

56

5 Implementation & Experimental Evaluation

in1 in2 in3

Y

Y

out1

(a) 3-input-1-
output

in1 in2 in3

Y Y

out1 out2

(b) 3-input-2-
output

in1 in2 in3 in4

Y

Y

Y

out1

(c) 4-input-1-
output

in1 in2 in3 in4

Y Y Y

Y Y

out1 out2

(d) 4-input-2-
output

in1 in2 in3 in4

Y Y Y

out1 out2 out3

(e) 4-input-3-
output

in1 in2 in3 in4 in5

Y

Y

Y

Y

out1

(f) 5-input-1-output

in1 in2 in3 in4 in5

Y
Y

Y

Y

Y

Y
Y

Y

out2out1

(g) 5-input-2-output

in1 in2 in3 in4 in5

Y Y Y Y

Y Y Y

out1 out2 out3

(h) 5-input-3-output

in1 in2 in3 in4 in5

Y Y Y Y

out1 out2 out3 out4

(i) 5-input-4-output

Figure 5.13: The selection networks used in the hybrid construction (§ 5.4) for auxiliary poles
with 3,4, or 5 inputs.

the desired inputs to the auxiliary poles are forwarded to the actual multi-input gate. The
constructions consist of multiple Y-Switches and the control bits of these switches can be set
such that only the desired inputs are forwarded. The constructions are given in Figure 5.13.
Each auxiliary pole that forwards less than than k inputs will be replaced by such a selection
network. The constructions only depend on the number of inputs and outputs, and the
control bits remain private to the function owner. The order of the inputs to the multi-input
gate is irrelevant since we can set the function table of the Universal Gates freely. Note that
the hybrid construction is the same as the dynamic constructions if 2 mergings are used. On
the other hand, the hybrid construction becomes the fixed construction if the number of
mergings equals the highest gate input size because no auxiliary poles are needed in this case.
Therefore, when referring to the hybrid construction, we exclude these cases.

57

5 Implementation & Experimental Evaluation

4LUT

5LUT

6LUT

7LUT

8LUT

51729 (-40.9%)

53389 (-39.0%)

53550 (-38.8%)

54156 (-38.1%)

54687 (-37.5%)

55053 (-37.1%)

55146 (-37.0%)

55285 (-36.8%)

55878 (-36.1%)

56477 (-35.5%)

73213 (-16.3%)

76311 (-12.8%)

76410 (-12.7%)

76794 (-12.4%)

77276 (-11.7%)

97776 (+11.7%)

97689 (+11.6%)

97740 (+11.7%)

101909 (+16.5%)

102299 (+16.9%)

(a) 256-bit Ripple-Carry Adder

4LUT

5LUT

6LUT

7LUT

8LUT

1422159 (-27.1%)

1429125 (-26.7%)

1429368 (-26.7%)

1429803 (-26.7%)

1563033 (-19.9%)

1545977 (-20.7%)

1548994 (-20.6%)

1549106 (-20.6%)

1549686 (-20.5%)

1582370 (-18.9%)

1201435 (-38.4%)

1209950 (-38.0%)

1209994 (-38.0%)

1210174 (-38.0%)

1244535 (-36.2%)

1523019 (-21.9%)

1437931 (-26.3%)

1520031 (-22.1%)

1520656 (-22.0%)

1555989 (-20.2%)

(b) 64-bit Ripple-Carry Multiplier

4LUT

5LUT

6LUT

7LUT

8LUT

968068 (-27.1%)

986201 (-25.7%)

989728 (-25.4%)

1004924 (-24.3%)

1060571 (-20.1%)

978109 (-26.3%)

985370 (-25.8%)

988188 (-25.5%)

1002451 (-24.5%)

1050189 (-20.9%)

817064 (-38.4%)

834963 (-37.1%)

838197 (-36.8%)

846938 (-36.2%)

894059 (-32.6%)

1043272 (-21.4%)

1036915 (-21.9%)

1042063 (-21.5%)

1059451 (-20.2%)

1106515 (-16.6%)

(c) 64-bit Karatsuba Multiplier

4LUT

5LUT

6LUT

7LUT

8LUT

664733 (-26.9%)

720253 (-20.8%)

720256 (-20.8%)

720930 (-20.7%)

754890 (-17.0%)

717295 (-21.1%)

718829 (-21.0%)

718912 (-21.0%)

719551 (-21.0%)

749427 (-17.6%)

570822 (-37.2%)

578976 (-36.3%)

579001 (-36.3%)

578888 (-36.4%)

605980 (-33.4%)

730976 (-19.6%)

720827 (-20.8%)

721004 (-20.7%)

721556 (-20.7%)

755223 (-17.0%)

(d) 64-bit Ripple-Carry Squarer

2 Mergings 3 Mergings 4 Mergings 5 Mergings

Figure 5.14: Hybrid, Arithmetic: UC sizes (number of AND gates) of cryptographic algo-
rithms with the hybrid construction (§5.4) w.r.t. the number of mergings. The
dashed vertical lines show the best results with the fixed (§4.1) or dynamic (§4.2)
construction. The solid vertical lines show the results for the standard binary
construction. The number in braces is the relative improvement over the binary
construction.

Figure 5.14 shows that the hybrid construction with 3 or 4 mergings always yields smaller
UC sizes than the standard binary construction. Using 5 mergings always increases the UC
sizes compared to 3 or 4 mergings. The problem is the same as with the fixed constructions
because 5 Γ1 EUGs are merged, although there are only few gates using this many inputs
(cf. Figure 5.2). The benchmarks for the distance circuits in Figure 5.15 show the same
behavior.

58

5 Implementation & Experimental Evaluation

4LUT

5LUT

6LUT

7LUT

8LUT

184969 (-45.2%)

185274 (-45.2%)

186262 (-44.9%)

277228 (-17.9%)

278390 (-17.6%)

222543 (-34.1%)

222634 (-34.1%)

223322 (-33.9%)

266927 (-21.0%)

268053 (-20.7%)

229137 (-32.2%)

229479 (-32.1%)

230129 (-31.9%)

290957 (-13.9%)

291989 (-13.6%)

307525 (-9.0%)

305497 (-9.6%)

307816 (-8.9%)

355392 (+5.2%)

356339 (+5.5%)

(a) 256-bit Manhattan Distance

4LUT

5LUT

6LUT

7LUT

8LUT

1609786 (-23.4%)

1636955 (-22.2%)

1637570 (-22.2%)

1668818 (-20.7%)

1741718 (-17.2%)

1718285 (-18.3%)

1722013 (-18.2%)

1722144 (-18.2%)

1745021 (-17.1%)

1808249 (-14.1%)

1329199 (-36.8%)

1355376 (-35.6%)

1355828 (-35.6%)

1378922 (-34.5%)

1437555 (-31.7%)

1671456 (-20.6%)

1658148 (-21.2%)

1658229 (-21.2%)

1678301 (-20.2%)

1743751 (-17.1%)

(b) 64-bit Euclidean Distance

2 Mergings 3 Mergings 4 Mergings 5 Mergings

Figure 5.15: Hybrid, Distance: UC sizes (number of AND gates) of distance algorithms with
the hybrid construction (§5.4) w.r.t. the number of mergings. The dashed vertical
lines show the best results with the fixed (§4.1) or dynamic (§4.2) construction.
The vertical lines show the results for the standard binary construction. The
number in braces is the relative improvement over the binary construction.

59

5 Implementation & Experimental Evaluation

4LUT

5LUT

6LUT

7LUT

8LUT

1629555 (-5.3%)

1640651 (-4.7%)

1650996 (-4.1%)

1692352 (-1.7%)

1702572 (-1.1%)

1535828 (-10.7%)

1550323 (-9.9%)

1543200 (-10.3%)

1568820 (-8.4%)

1578416 (-8.3%)

1540529 (-10.5%)

1542097 (-10.4%)

1579320 (-8.2%)

1616895 (-6.5%)

1657788 (-3.7%)

1873823 (+8.8%)

1736603 (+0.9%)

1738484 (+1.0%)

1763220 (+2.4%)

1773030 (+3.0%)

(a) AES

4LUT

5LUT

6LUT

7LUT

8LUT

1164258 (-8.7%)

1170717 (-8.2%)

1051611 (-17.5%)

1006746 (-21.1%)

974733 (-23.6%)

1169187 (-8.3%)

1137904 (-10.8%)

995170 (-22.0%)

957896 (-24.9%)

948987 (-25.6%)

1130037 (-11.4%)

1182665 (-7.3%)

1128426 (-11.5%)

1001350 (-21.5%)

954362 (-25.2%)

1385979 (+8.7%)

1260987 (-1.1%)

1248915 (-2.1%)

1164544 (-8.7%)

1131887 (-11.2%)

(b) DES

4LUT

5LUT

6LUT

7LUT

8LUT

831924 (-6.5%)

815007 (-8.4%)

825962 (-7.2%)

838422 (-5.8%)

849459 (-4.6%)

827670 (-7.0%)

726598 (-18.4%)

729968 (-18.0%)

743126 (-16.5%)

755066 (-15.2%)

827240 (-7.1%)

814382 (-8.5%)

817930 (-8.1%)

825372 (-7.3%)

835154 (-6.2%)

1068364 (+20.0%)

906004 (+1.8%)

907375 (+2.0%)

916204 (+2.9%)

925637 (+4.0%)

(c) MD5

4LUT

5LUT

6LUT

7LUT

8LUT

1798392 (-12.8%)

1815150 (-12.0%)

1820037 (-11.8%)

1966535 (-4.7%)

2019026 (-2.1%)

1757411 (-9.7%)

1714182 (-9.2%)

1712867 (-8.9%)

1796156 (-12.4%)

1846680 (-11.8%)

1705745 (-15.5%)

1714328 (-14.9%)

1716980 (-13.2%)

1798336 (-11.8%)

1845563 (-11.3%)

2149540 (+1.5%)

1875784 (-6.0%)

1883524 (-5.7%)

1968263 (-4.5%)

2019338 (-4.0%)

(d) SHA-1

2 Mergings 3 Mergings 4 Mergings 5 Mergings

Figure 5.16: Hybrid, Crypto: UC sizes (number of AND gates) of cryptographic algorithms
with the hybrid construction (§5.4) w.r.t. the number of mergings. The dashed
vertical lines show the best results with the fixed (§4.1) or dynamic (§4.2) con-
struction. The vertical lines show the results for the standard binary construction.
The number in braces is the relative improvement over the binary construction.

The first circuits where the hybrid construction yields the smallest sizes (compared to the
best case for the dynamic or fixed construction) are the DES and MD5 circuit. Those UC sizes
could be reduced by 26% and 18% compared to the standard binary construction.

60

5 Implementation & Experimental Evaluation

10LUT 12LUT 14LUT

2

3

4
·106

(a) AES

10LUT 12LUT 14LUT

1

1.2

1.4

1.6

·106

(b) DES

10LUT 12LUT 14LUT

0.8

1

1.2

·106

(c) MD5

10LUT 12LUT 14LUT

2

3

4

·106

(d) SHA-1
2 mergings 3 mergings 4 mergings 5 mergings

Figure 5.17: Hybrid, Crypto: UC sizes (number of AND gates) of cryptographic algorithms
with the hybrid construction (§5.4) and very high LUT sizes. The solid black
line represents the best UC size so far. The dashed gray line represents the result
for the standard binary construction.

What happens if we further increase the LUT size? The only circuit that can be further reduced
in size by allowing higher LUT sizes is the DES circuit. All other circuits have their sweet spot
between 3 and 4. Figure 5.17 shows that we can further decrease the UC size of the DES
circuit to 862,203 AND gates which is an improvement of 33% over the binary construction
with 1,275,338 AND gates.

61

5 Implementation & Experimental Evaluation

Fixed (§4.1) Dynamic (§4.2) Hybrid (§5.4)
256-bit Ripple-Carry Adder 37% 41% 37%
64-bit Ripple-Carry Multiplier 49% 38% 38%
64-bit Karatsuba Multiplier 48% 36% 37%
64-bit Ripple-Carry Squarer 45% 37% 36%
256-bit Manhattan Distance 40% 45% 34%
64-bit Euclidean Distance 45% 37% 36%
AES 12% 5% 11%
DES 11% 33% 33%
MD5 13% 8% 18%
SHA-1 19% 13% 15%
Average 32% 29% 30%

Table 5.4: The relative improvement in the UC sizes over the binary construction. The
improvement is calculated with the best possible LUT size. For the hybrid con-
struction (§5.4) either 3 or 4 mergings are used, where we excluded cases in
which the hybrid construction becomes the fixed construction (§4.1). The highest
improvement per circuit is marked in bold.

62

6 Conclusion

In this work, we implemented and extended the state-of-the-art UC construction of
Liu et al. [LYZ+21] to support multi-input gates and showed the practicality of this ap-
proach. The extension to multi-input gates uses the underlying EUG as a black box and can be
used with any other EUG too. We showed that all three proposed constructions (fixed (§4.1),
dynamic (§4.2), hybrid (§5.4)) reduced the UC sizes compared to the standard binary gate
UC construction by almost a third on average (cf. Table 5.4). The UC size reduction for
cryptographic circuits was always lower than for arithmetic or distance circuits. The concrete
improvement depends heavily on the concrete circuit. For each construction, there are
circuits where they yield the smallest UC size. Our new dynamic construction showed its
potential if high LUT sizes are used with many smaller gates as with the random circuits or
the DES circuit in the 8LUT version. It always yields smaller UCs than the binary construction
for all testes LUT sizes. However, if the best possible LUT size is used, the fixed construction
that relies on the ideas of [Val76][SS08, §4.3] is the most efficient. But, the size of fixed
construction grows linearly with the fanin of the circuit, which can be a problem if only few
gates with many inputs are used. In those cases, the dynamic and hybrid construction are
the most efficient.

Future Work

Further UC size reduction could possibly be achieved by allowing gates to have multiple
distinct outputs.

We saw that the sweet spot for the LUT size is between 3 and 4 for most of the circuits because
this gives the largest circuit size reduction while keeping the LUT sizes small. Higher LUT
sizes only seemed to work for the DES circuit. Therefore, a linear PFE scheme like [KM11;
MS13; MSS14; BBK18; HKRS20] supporting gates with 3 or 4 inputs would be desirable.
We also saw that a high number of outgoing wires per gate significantly increases the circuit
sizes. An interesting area of research that directly improves the UC sizes is the synthesizing
of circuits with higher LUT sizes and optimized gate outputs, which yield smaller circuits,
and therefore, smaller UCs.

Further research can possibly find a way to circumvent the need for copy gates and directly
allow higher fanouts.

Because our construction uses the concrete Γ1 EUG construction as a black-box algorithm,
any improvement on Γ1 EUGs directly improves our proposed construction.

63

List of Figures

2.1 (a) shows the Γ2(4) graph with already partitioned edge sets E1 and E2, (b)
shows the EUG in which the edge set E1 is embedded, (c) shows the EUG
in which the edge set E2 is embedded, (d) shows the merged EUG with all
edges embedded. 9

2.2 The used switching nodes depending on the programming bit p. 12

3.1 Augmented 2-Way Valiant Block and Valiant’s Superpole constructions. . . . 14
3.2 Valiant’s 2-Way-Split construction for 8 poles. Note that unnecesserary head

and tail nodes of each EUG and sub EUG were removed. 17
3.3 Superpole and basic structure of the 2-Way split construction of Liu et al. . 24
3.4 The complete Γ1(8) EUG with Liu’s weak 2-Way-Split construction for 8 poles. 26
3.5 Short circuiting Liu et.al.’s weak construction. 32
3.6 Liu’s 2-Way-Split construction for 8 poles. The recursion points in gray are

left for an easier comparison with the weak version. Note that the first and
last node of each EUG and sub EUG are not needed. 33

4.1 Example of our dynamic multi-input gate construction. 37
4.2 The 2k-to-1 multiplexer construction. The control bits c0 and c1 are the

lookup table entries for inputs starting with 0, resp. with 1 (cf. proof of
Proposition 4). 41

5.1 Arithmetic: Comparison of the UC sizes (number of AND gates) needed to
embed arithmetic operations w.r.t. different LUT sizes. The vertical lines
show the results of the binary approach. The number in braces is the relative
improvement over the binary construction. 48

5.2 Arithmetic: Distribution of the gate input sizes w.r.t. different LUT sizes.
The different colors represent the used gate input sizes. Note that this figure
only counts the number of gates and does not weight a multi-input gate more
than a binary gate. 49

5.3 Ripple-Carry Adder: Share of the building blocks in the UC size (number
of AND gates) for the 256-bit Ripple-Carry Adder with LUT size 8. 50

5.4 Arithmetic: Comparison between the original circuit sizes and the same
circuits after reducing the fanout. The used versions of the circuits are the
ones that yielded the smallest UC size using the fixed or dynamic approach.
Note that these are the circuit sizes before replacing wires by auxiliary poles
in the dynamic construction. 50

64

List of Figures

5.5 Distance: Comparison of the UC sizes (number of AND gates) needed to
embed Manhattan and Euclidean Distance w.r.t. different LUT sizes. The
vertical lines show the results of the binary approach. The number in braces
is the relative improvement over the binary construction. 51

5.6 Distance: Distribution of the gate input sizes w.r.t. different LUT sizes. The
different colors represent the used gate input sizes. Note that this figure only
counts the number of gates and does not weight a multi-input gate more
than a binary gate. 51

5.7 Manhattan Distance: Number of AND gates needed to instantiate the gates
of the Manhattan circuit as Universal Gates w.r.t. different maximum LUT
sizes. The number in braces is the relative difference to the number of AND
gates needed for the Universal Gates with the binary construction (2LUT).
Note that this is before fanout reduction of the circuit, which would possibly
add copy gates. 52

5.8 Distance: Comparison between the original circuit sizes and the same circuits
after reducing the fanout. The used versions of the circuits are the ones that
yielded the smallest UC size using the fixed or dynamic approach. Note that
these are the circuit sizes before replacing wires by auxiliary poles in the
dynamic construction. 52

5.9 Cryptographic: Comparison of the UC sizes (number of AND gates) needed
to embed cryptographic algorithms w.r.t. different LUT sizes. The vertical
lines show the results of the binary approach. The number in braces is the
relative improvement over the binary construction. 53

5.10 Cryptographic: Distribution of the gate input sizes w.r.t. different LUT sizes.
The different colors represent the used gate input sizes. Note that this figure
only counts the number of gates and does not weight a multi-input gate more
than a binary gate. 54

5.11 Cryptographic: Comparison between the original circuit sizes and the same
circuits after reducing the fanout. The used versions of the circuits are the
ones that yielded the smallest UC size using the fixed or dynamic approach.
Note that these are the circuit sizes before replacing wires by auxiliary poles
in the dynamic construction. 55

5.12 Random: Size of UCs when embedding random circuits with 1000 inputs,
10000 gates and 1000 outputs with different fanin and fanout. Solid lines
are the results for the dynamic construction. Dashed lines are the results for
the fixed construction. 55

5.13 The selection networks used in the hybrid construction (§ 5.4) for auxiliary
poles with 3,4, or 5 inputs. 57

65

List of Figures

5.14 Hybrid, Arithmetic: UC sizes (number of AND gates) of cryptographic al-
gorithms with the hybrid construction (§5.4) w.r.t. the number of mergings.
The dashed vertical lines show the best results with the fixed (§4.1) or dy-
namic (§4.2) construction. The solid vertical lines show the results for the
standard binary construction. The number in braces is the relative improve-
ment over the binary construction. 58

5.15 Hybrid, Distance: UC sizes (number of AND gates) of distance algorithms
with the hybrid construction (§5.4) w.r.t. the number of mergings. The
dashed vertical lines show the best results with the fixed (§4.1) or dy-
namic (§4.2) construction. The vertical lines show the results for the standard
binary construction. The number in braces is the relative improvement over
the binary construction. 59

5.16 Hybrid, Crypto: UC sizes (number of AND gates) of cryptographic algo-
rithms with the hybrid construction (§5.4) w.r.t. the number of mergings.
The dashed vertical lines show the best results with the fixed (§4.1) or dy-
namic (§4.2) construction. The vertical lines show the results for the standard
binary construction. The number in braces is the relative improvement over
the binary construction. 60

5.17 Hybrid, Crypto: UC sizes (number of AND gates) of cryptographic algo-
rithms with the hybrid construction (§5.4) and very high LUT sizes. The solid
black line represents the best UC size so far. The dashed gray line represents
the result for the standard binary construction. 61

A.1 Valiant, Arithmetic: Comparison of the UC sizes (number of AND gates)
needed to embed arithmetic operations w.r.t. different LUT sizes and Valiant’s
2-Way split EUG [Val76]. The vertical lines show the results of the binary
approach. The number in braces is the relative improvement over the binary
construction. 73

A.2 Valiant, Distance: Comparison of the UC sizes (number of AND gates)
needed to embed arithmetic operations w.r.t. different LUT sizes and Valiant’s
2-Way split EUG [Val76]. The vertical lines show the results of the binary
approach. The number in braces is the relative improvement over the binary
construction. 73

A.3 Valiant, Crypto: Comparison of the UC sizes (number of AND gates) needed
to embed arithmetic operations w.r.t. different LUT sizes and Valiant’s 2-Way
split EUG [Val76]. The vertical lines show the results of the binary approach.
The number in braces is the relative improvement over the binary construction. 74

66

List of Figures

A.4 Compilation times in milliseconds for creating the UC (with Liu et al.’s
EUG [LYZ+21]) with corresponding programming bits without correctness
checks. Note that compilation time is a one-time expense that can be done
offline once the function is known. The circuit size is the crucial factor in
the online evaluation. The circuits were input in SHDL format. The times
are the average of 100 runs. No special compiler optimization was used.
The used system consisteted of an AMD Ryzen 3700x (3,6GHz) and 16GB
DDR4-3000 RAM. The used OS was Linux Mint 20.1 with kernel version
5.11.0-051100-generic. 75

67

List of Tables

5.1 The circuits used in our benchmark. 45
5.2 Basic properties of the used circuits. 46
5.3 The needed AND and XOR gates per building block in our UC constructions. 46
5.4 The relative improvement in the UC sizes over the binary construction. The

improvement is calculated with the best possible LUT size. For the hybrid
construction (§5.4) either 3 or 4 mergings are used, where we excluded cases
in which the hybrid construction becomes the fixed construction (§4.1). The
highest improvement per circuit is marked in bold. 62

68

List of Abbreviations

STPC Secure Two-Party Computation

PFE Private Function Evaluation

SPFE Semi-Private Function Evaluation

UC Universal Circuit

EUG Edge-Universal Graph

LUT Lookup Table

SHDL Secure Hardware Definition Language

FPGA Field Programmable Gate Array

69

Bibliography

[AGKS20] M. Y. ALHASSAN, D. GÜNTHER, Á. KISS, T. SCHNEIDER. “Efficient and Scalable
Universal Circuits”. In: J. Cryptol. 33.3 (2020), pp. 1216–1271. Code: https:
//github.com/encryptogroup/UC.

[Alo03] N. ALON. “A simple algorithm for edge-coloring bipartite multigraphs”. In:
Information Processing Letters 85.6 (2003), pp. 301–302.

[BBK18] O. BIÇER, M. A. BINGÖL, M. S. KIRAZ. “Highly Efficient and Reusable Private
Function Evaluation with Linear Complexity”. In: IACR Cryptol. ePrint Arch.
(2018). Paper is accepted at TDSC, p. 515.

[BBKL19] M. A. BINGÖL, O. BIÇER, M. S. KIRAZ, A. LEVI. “An Efficient 2-Party Private
Function Evaluation Protocol Based on Half Gates”. In: Comput. J. 62.4
(2019), pp. 598–613.

[BFK+09] M. BARNI, P. FAILLA, V. KOLESNIKOV, R. LAZZERETTI, A.-R. SADEGHI, T. SCHNEIDER.
“Secure Evaluation of Private Linear Branching Programs with Medical Ap-
plications”. In: ESORICS. Vol. 5789. Springer, 2009, pp. 424–439.

[BPSW07] J. BRICKELL, D. E. PORTER, V. SHMATIKOV, E. WITCHEL. “Privacy-preserving
remote diagnostics”. In: CCS. ACM, 2007, pp. 498–507.

[CMCB07] S. CHO, A. MISHCHENKO, S. CHATTERJEE, R. BRAYTON. “Efficient FPGA mapping
using Priority Cuts”. In: FPGA. 2007.

[COS01] R. COLE, K. OST, S. SCHIRRA. “Edge-Coloring Bipartite Multigraphs in O(E
log D) Time”. In: Combinatorica 21.1 (2001), pp. 5–12.

[Die10] R. DIESTEL. “Graph Theory”. Fourth. Vol. 173. Springer, 2010.

[DKS+17] G. DESSOUKY, F. KOUSHANFAR, A.-R. SADEGHI, T. SCHNEIDER, S. ZEITOUNI,
M. ZOHNER. “Pushing the Communication Barrier in Secure Computation
using Lookup Tables”. In: NDSS. The Internet Society, 2017.

[FAZ05] K. B. FRIKKEN, M. J. ATALLAH, C. ZHANG. “Privacy-preserving credit checking”.
In: EC. ACM, 2005, pp. 147–154.

[FKSW19] S. FELSEN, Á. KISS, T. SCHNEIDER, C. WEINERT. “Secure and Private Function
Evaluation with Intel SGX”. In: CCSW@CCS. ACM, 2019, pp. 165–181.

[FVK+15] B. A. FISCH, B. VO, F. KRELL, A. KUMARASUBRAMANIAN, V. KOLESNIKOV, T. MALKIN,
S. M. BELLOVIN. “Malicious-Client Security in Blind Seer: A Scalable Private
DBMS”. In: S & P. IEEE, 2015, pp. 395–410.

70

https://github.com/encryptogroup/UC
https://github.com/encryptogroup/UC

Bibliography

[GKS17] D. GÜNTHER, Á. KISS, T. SCHNEIDER. “More Efficient Universal Circuit Con-
structions”. In: ASIACRYPT (2). Vol. 10625. Springer, 2017, pp. 443–470.

[GKSS19] D. GÜNTHER, Á. KISS, L. SCHEIDEL, T. SCHNEIDER. “Poster: Framework for
Semi-Private Function Evaluation with Application to Secure Insurance
Rate Calculation”. In: CCS. ACM, 2019, pp. 2541–2543.

[GMW87] O. GOLDREICH, S. MICALI, A. WIGDERSON. “How to Play any Mental Game or
A Completeness Theorem for Protocols with Honest Majority”. In: STOC.
ACM, 1987, pp. 218–229.

[HKRS20] M. HOLZ, Á. KISS, D. RATHEE, T. SCHNEIDER. “Linear-Complexity Private
Function Evaluation is Practical”. In: ESORICS (2). Vol. 12309. Springer,
2020, pp. 401–420.

[Kar53] M. KARNAUGH. “The map method for synthesis of combinational logic cir-
cuits”. In: Transactions of the American Institute of Electrical Engineers, Part I:
Communication and Electronics 72.5 (1953), pp. 593–599.

[KM11] J. KATZ, L. MALKA. “Constant-Round Private Function Evaluation with Linear
Complexity”. In: ASIACRYPT. Vol. 7073. Springer, 2011, pp. 556–571.

[KS08a] V. KOLESNIKOV, T. SCHNEIDER. “A Practical Universal Circuit Construction
and Secure Evaluation of Private Functions”. In: FC. Vol. 5143. Springer,
2008, pp. 83–97.

[KS08b] V. KOLESNIKOV, T. SCHNEIDER. “Improved Garbled Circuit: Free XOR Gates
and Applications”. In: ICALP (2). Vol. 5126. Springer, 2008, pp. 486–498.

[KS16] Á. KISS, T. SCHNEIDER. “Valiant’s Universal Circuit is Practical”. In: EURO-
CRYPT (1). Vol. 9665. Springer, 2016, pp. 699–728.

[LMS16] H. LIPMAA, P. MOHASSEL, S. S. SADEGHIAN. “Valiant’s Universal Circuit: Im-
provements, Implementation, and Applications”. In: IACR Cryptol. ePrint
Arch. (2016), p. 17.

[LYZ+21] H. LIU, Y. YU, S. ZHAO, J. ZHANG, W. LIU, Z. HU. “Pushing the Limits of Valiant’s
Universal Circuits: Simpler, Tighter and More Compact”. In: CRYPTO (2).
Vol. 12826. Springer, 2021, pp. 365–394.

[MNPS04] D. MALKHI, N. NISAN, B. PINKAS, Y. SELLA. “Fairplay - Secure Two-Party Com-
putation System”. In: USENIX Security Symposium. USENIX, 2004, pp. 287–
302.

[MS13] P. MOHASSEL, S. S. SADEGHIAN. “How to Hide Circuits in MPC an Efficient
Framework for Private Function Evaluation”. In: EUROCRYPT. Vol. 7881.
Springer, 2013, pp. 557–574.

[MSS14] P. MOHASSEL, S. S. SADEGHIAN, N. P. SMART. “Actively Secure Private Function
Evaluation”. In: ASIACRYPT (2). Vol. 8874. Springer, 2014, pp. 486–505.

[NSMS14] S. NIKSEFAT, B. SADEGHIYAN, P. MOHASSEL, S. S. SADEGHIAN. “ZIDS: A Privacy-
Preserving Intrusion Detection System Using Secure Two-Party Computa-
tion Protocols”. In: Comput. J. 57.4 (2014), pp. 494–509.

71

Bibliography

[OI07] R. OSTROVSKY, W. E. S. III. “Private Searching on Streaming Data”. In: J.
Cryptol. 20.4 (2007), pp. 397–430.

[Pin02] B. PINKAS. “Cryptographic Techniques for Privacy-Preserving Data Mining”.
In: SIGKDD Explor. 4.2 (2002), pp. 12–19.

[PKV+14] V. PAPPAS, F. KRELL, B. VO, V. KOLESNIKOV, T. MALKIN, S. G. CHOI, W. GEORGE,
A. D. KEROMYTIS, S. M. BELLOVIN. “Blind Seer: A Scalable Private DBMS”. In:
S & P. IEEE, 2014, pp. 359–374.

[PSS09] A. PAUS, A.-R. SADEGHI, T. SCHNEIDER. “Practical Secure Evaluation of Semi-
private Functions”. In: ACNS. Vol. 5536. 2009, pp. 89–106.

[Qui52] W. V. QUINE. “The Problem of Simplifying Truth Functions”. In: The American
Mathematical Monthly 59.8 (1952), pp. 521–531.

[RR21] M. ROSULEK, L. ROY. “Three Halves Make a Whole? Beating the Half-Gates
Lower Bound for Garbled Circuits”. In: CRYPTO (1). Vol. 12825. Springer,
2021, pp. 94–124.

[SS08] A.-R. SADEGHI, T. SCHNEIDER. “Generalized Universal Circuits for Secure
Evaluation of Private Functions with Application to Data Classification”.
In: ICISC. Vol. 5461. Springer, 2008, pp. 336–353.

[ST] N. SMART, S. TILLICH. “’Bristol Fashion’ MPC Circuits”. https://homes.esat.
kuleuven.be/~nsmart/MPC/old-circuits.html.

[SYY99] T. SANDER, A. L. YOUNG, M. YUNG. “Non-Interactive CryptoComputing For
NC1”. In: FOCS. IEEE, 1999, pp. 554–567.

[Val76] L. G. VALIANT. “Universal Circuits (Preliminary Report)”. In: STOC. ACM,
1976, pp. 196–203.

[Weg87] I. WEGENER. “The Complexity of Boolean Functions”. John Wiley; Sons, Inc.,
1987, pp. 90–92.

[Yao86] A. C.-C. YAO. “How to Generate and Exchange Secrets (Extended Abstract)”.
In: FOCS. IEEE, 1986, pp. 162–167.

[ZRE15] S. ZAHUR, M. ROSULEK, D. EVANS. “Two Halves Make a Whole - Reducing
Data Transfer in Garbled Circuits Using Half Gates”. In: EUROCRYPT (2).
Vol. 9057. Springer, 2015, pp. 220–250.

[ZYZL19] S. ZHAO, Y. YU, J. ZHANG, H. LIU. “Valiant’s Universal Circuits Revisited: An
Overall Improvement and a Lower Bound”. In: ASIACRYPT (1). Vol. 11921.
Springer, 2019, pp. 401–425.

72

https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html

A Appendix

A.1 Benchmarks with Valiant’s EUG Construction

2LUT

3LUT

4LUT

8LUT

123382 (0.0%)

75821 (-38.5%)

308903 (-15.7%)

308903 (+150.4.8%)

123382 (0.0%)

74762 (-39.4%)

74781 (-39.4%)

76411 (-38.1%)

(a) 256-bit Ripple-Carry Adder
2LUT

3LUT

4LUT

8LUT

2870546 (0.0%)

1438977 (-49.9%)

1678899 (-41.5%)

4833854 (+68.4%)

2870546 (0.0%)

1757266 (-38.8%)

2073307 (-27.7%)

2188237 (-23.8%)

(b) 64-bit Ripple-Carry Multiplier

2LUT

3LUT

4LUT

8LUT

1955501 (0.0%)

982946 (-49.7%)

1116560 (-42.9%)

3321927 (+69.9%)

1955501 (0.0%)

1240518 (-36.6%)

1400360 (-28.4%)

1515463 (-22.5%)

(c) 64-bit Karatsuba Multiplier
2LUT

3LUT

4LUT

8LUT

1325330 (0.0%)

691740 (-47.8%)

788094 (-40.5%)

2325709 (+75.5%)

1325330 (0.0%)

836665 (-36.9%)

959633 (-27.6%)

1040174 (-21.5%)

(d) 64-bit Ripple-Carry Squarer

Fixed (§4.1) Dynamic (§4.2)

Figure A.1: Valiant, Arithmetic: Comparison of the UC sizes (number of AND gates) needed
to embed arithmetic operations w.r.t. different LUT sizes and Valiant’s 2-Way split
EUG [Val76]. The vertical lines show the results of the binary approach. The
number in braces is the relative improvement over the binary construction.

2LUT

3LUT

4LUT

8LUT

473023 (0.0%)

290063 (-38.7%)

315481 (-33.3%)

907806 (+91.9%)

473023 (0.0%)

292362 (-38.2%)

260845 (-44.9%)

377106 (-20.3%)

(a) 256-bit Manhattan Distance
2LUT

3LUT

4LUT

8LUT

3113059 (0.0%)

1617256 (-48.0%)

1873863 (-39.8%)

5280559 (+69.6%)

3113059 (0.0%)

1954859 (-37.2%)

2279446 (-26.8%)

2443554 (-21.5%)

(b) 64-bit Euclidean Distance

Fixed (§4.1) Dynamic (§4.2)

Figure A.2: Valiant, Distance: Comparison of the UC sizes (number of AND gates) needed
to embed arithmetic operations w.r.t. different LUT sizes and Valiant’s 2-Way split
EUG [Val76]. The vertical lines show the results of the binary approach. The
number in braces is the relative improvement over the binary construction.

73

A Appendix

2LUT

3LUT

4LUT

8LUT

2490098 (0.0%)

2203971 (-11.5%)

2118025 (-15.0%)

5642409 (+126.1%)

2490098 (0.0%)

2552018 (+2.5%)

2328095 (-6.5%)

2384824 (-4.2%)

(a) AES
2LUT

3LUT

4LUT

8LUT

1874326 (0.0%)

1598649 (-14.7%)

1576349 (-15.9%)

2858523 (+52.5%)

1874326 (0.0%)

1894061 (+1.1%)

1685646 (-10.1%)

1320121 (-29.6%)

(b) DES

2LUT

3LUT

4LUT

8LUT

1295561 (0.0%)

1093734 (-15.6%)

1134928 (-12.4%)

3151411 (+143.2%)

1295561 (0.0%)

1308046 (+1.0%)

1186064 (-8.5%)

1187663 (-8.3%)

(c) MD5
2LUT

3LUT

4LUT

8LUT

3047538 (0.0%)

2398597 (-21.3%)

2361577 (-22.5%)

5963656 (+95.7%)

3047538 (0.0%)

2871693 (-5.8%)

2589892 (-15.0%)

2875886 (-5.6%)

(d) SHA-1

Fixed (§4.1) Dynamic (§4.2)

Figure A.3: Valiant, Crypto: Comparison of the UC sizes (number of AND gates) needed to
embed arithmetic operations w.r.t. different LUT sizes and Valiant’s 2-Way split
EUG [Val76]. The vertical lines show the results of the binary approach. The
number in braces is the relative improvement over the binary construction.

74

A Appendix

A.2 Compilation Times

2LUT

3LUT

8LUT

1,219

599

1,382

1,270

594

624

(a) 256-bit Ripple-Carry Adder

2LUT

3LUT

8LUT

1.29 · 105

35,441

38,013

1.31 · 105

48,124

75,552

(b) 64-bit Ripple-Carry Multiplier

2LUT

3LUT

8LUT

80,946

20,108

50,654

79,012

25,582

24,378

(c) 64-bit Karatsuba Multiplier

2LUT

3LUT

8LUT

37,993

11,108

13,154

39,080

15,582

23,138

(d) 64-bit Ripple-Carry Squarer

2LUT

3LUT

8LUT

14,432

7,650

8,084

13,996

9,134

11,200

(e) 256-bit Manhattan Distance

2LUT

3LUT

8LUT

1.61 · 105

40,519

43,527

1.61 · 105

58,702

89,356

(f) 64-bit Euclidean Distance

2LUT

3LUT

8LUT

1.03 · 105

59,764

51,128

1.03 · 105

95,705

84,321

(g) AES

2LUT

3LUT

8LUT

64,953

35,730

16,837

68,142

61,890

29,348

(h) DES

2LUT

3LUT

8LUT

34,757

19,498

18,071

34,800

31,903

28,149

(i) MD5

2LUT

3LUT

8LUT

1.41 · 105

69,304

51,719

1.41 · 105

1.13 · 105

1.13 · 105

(j) SHA-1

Fixed (§4.1) Dynamic (§4.2)

Figure A.4: Compilation times in milliseconds for creating the UC (with Liu et al.’s
EUG [LYZ+21]) with corresponding programming bits without correctness checks.
Note that compilation time is a one-time expense that can be done offline once the
function is known. The circuit size is the crucial factor in the online evaluation.
The circuits were input in SHDL format. The times are the average of 100 runs.
No special compiler optimization was used. The used system consisteted of an
AMD Ryzen 3700x (3,6GHz) and 16GB DDR4-3000 RAM. The used OS was Linux
Mint 20.1 with kernel version 5.11.0-051100-generic.

75

	Introduction
	Preliminaries
	Graph Theory
	Edge-Universal Graphs
	Using Edge-Universal Graphs for Private Function Evaluation

	Edge-Universal Graph Constructions
	Valiant's Edge-Universal Graph Construction
	Liu et al.'s Edge-Universal Graph Construction
	The Weak Version
	The Optimized Version

	Support for Multi-Input Gates
	The Fixed Edge-Universal Graph Construction of valiant[§4.3]ss08
	Our Dynamic Edge-Universal Graph Construction
	Transforming a Multi-Input Edge-Universal Graph into a Universal Circuit

	Implementation & Experimental Evaluation
	About The Implementation
	Test Setup and Methodology
	Universal Circuit Sizes
	An Improvement Attempt: The Hybrid Construction

	Conclusion
	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography
	Appendix
	Benchmarks with Valiant's EUG Construction
	Compilation Times

