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Abstract. Universal circuits (UCs) can be programmed to evaluate
any circuit of a given size k. They provide elegant solutions in var-
ious application scenarios, e.g. for private function evaluation (PFE)
and for improving the flexibility of attribute-based encryption (ABE)
schemes. The optimal size of a universal circuit is proven to be Ω(k log k).
Valiant (STOC’76) proposed a size-optimized UC construction, which
has not been put in practice ever since. The only implementation of uni-
versal circuits was provided by Kolesnikov and Schneider (FC’08), with
size O(k log2 k).

In this paper, we refine the size of Valiant’s UC and further improve
the construction by (at least) 2k. We show that due to recent optimiza-
tions and our improvements, it is the best solution to apply in the case
for circuits with a constant number of inputs and outputs. When the
number of inputs or outputs is linear in the number of gates, we propose
a more efficient hybrid solution based on the two existing constructions.
We validate the practicality of Valiant’s UC, by giving an example imple-
mentation for PFE using these size-optimized UCs.

Keywords: Universal circuit · Size-optimization · Private function eval-
uation

1 Introduction

Any computable function f(x) can be represented as a Boolean circuit with input
bits x = (x1, . . . , xu). Universal circuits (UCs) are programmable circuits, which
means that beyond the true u inputs, they receive p = (p1, . . . , pm) program
bits as further inputs. By means of these program bits, the universal circuit is
programmed to evaluate the function, such that UC (x, p) = f(x). The advantage
of universal circuits in general is that one can apply the same UC for computing
different functions of the same size. An analogy between universal circuits and
a universal Turing machine allows to turn any function into data in the form of
a program description. Thus, the size-depth problem of UCs can be related to
the time-space problem for Turing machines [Val76].

Efficient constructions considering both the size and the depth of the UC were
proposed. The first approach was the optimization of the size by Valiant [Val76],
resulting in a construction with asymptotically optimal size O(k log k) and depth
O(k), where k denotes the size of the simulated circuits. The second optimization
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was proposed with respect to the UC depth in [CH85], where a construction
with linear depth O(d) in the simulated circuit depth d and size O( k3d

log k ) was
designed. In this paper, due to the applications that we revisit in Sect. 1.2, e.g.,
diagnostic programs, blinded policies and database queries, we concentrate on
the existing size-optimized UCs and note, that the asymptotically optimal size is
Ω(k log k) [Val76,Weg87].

The most prominent application of universal circuits is the evaluation of
private functions based on secure function evaluation (SFE) or secure two-
party computation. SFE enables two parties P1 and P2 to evaluate a pub-
licly known function f(x, y) on their private inputs x and y, ensuring that
none of the participants learns anything about the other participant’s input.
SFE ensures that both P1 and P2 learn the correct result of the evaluation.
Many secure computation protocols use Boolean circuits for representing the
desired functionality, such as Yao’s garbled circuit protocol [Yao86,LP09a] and
the GMW protocol [GMW87]. In some applications the function itself should
be kept secret. This setting is called private function evaluation (PFE), where
we assume that only one of the parties P1 knows the function f(x), whereas the
other party P2 provides the input to the private function. P2 learns no informa-
tion about f besides the size of the circuit defining the function and the number
of inputs and outputs.

PFE can be reduced to SFE [AF90,SYY99,Pin02,KS08b] by securely eval-
uating a UC that is programmed by P1 to evaluate the function f on P2’s
input x. Thus, P1 provides the program bits for the UC and P2 provides his pri-
vate input x into an SFE protocol that computes a UC. The complexity of PFE
in this case is determined mainly by the complexity of the UC construction. The
security follows from that of the SFE protocol that is used to evaluate the UC. If
the SFE protocol is secure against semi-honest, covert or malicious adversaries,
then the PFE protocol is secure in the same adversarial setting.

1.1 Related Work on Universal Circuits and Private
Function Evaluation

Universal Circuits. Valiant presented an asymptotically optimal universal circuit
construction with size ≈ 4.75(u+v+k∗) log2(u+v+k∗) [Val76], relying on edge-
universal graphs. u, k and v denote the respective number of inputs, gates and
outputs in the simulated circuit, and k∗ is the number of gates in the equivalent
fanout-2 circuit, with k ≤ k∗ ≤ 2k+ v. Valiant’s size-optimized UC construction
was recapitulated in [Weg87, Sect. 4.8]. However, Valiant’s construction has been
considered to be mostly a proof of existence of a universal circuit, whereas details
needed for the practical realization, e.g., how to derive the program for the UC
are left open. Kolesnikov and Schneider proposed a UC construction with size
≈ 0.75k log22 k+2.25k log2 k+k log2 u+(0.5k+0.5v) log2 v [KS08b,Sch08]. They
present the first implementation of PFE using UCs by extending the Fairplay
secure computation framework [MNPS04]. Some building blocks of this con-
struction are of interest, but due to its asymptotically non-optimal size, we show
in Sect. 3.2 that Valiant’s UC construction results in smaller UCs for circuits in
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the most general case. The UC constructions from [Val76,KS08b] were general-
ized for circuits consisting of gates with more than two inputs in [SS08]. In this
paper, we show the practicality of Valiant’s UC construction.

In concurrent and independent work [LMS16], Lipmaa et al. also bring the
same UC construction to practice. They detail a k-way recursive construction
for UCs, instantiate it for k ∈ {2, 4} as in [Val76], and descrease its total number
of gates compared to that of Valiant’s construction. However, in contrast to our
optimizations, their number of AND gates is exactly the same and therefore their
improvement does not affect PFE with UC, when XOR gates are evaluated for
free [KS08a]. Currently their implementation for generating and programming
UCs supports the 2-way recursive construction, the same construction that we
study and realize in practice in this work.

Private Function Evaluation. In [KM11], Katz and Malka presented an app-
roach for PFE that does not rely on UCs. They use (singly) homomor-
phic public-key encryption as well as a symmetric-key encryption scheme
and achieve constant-round PFE with linear communication complexity. How-
ever, the number of public-key operations is linear in the circuit size and
due to the gap between the efficiency of public-key and symmetric-key
operations, this results in a less efficient protocol for circuits with reason-
able size. Their protocol is secure against semi-honest adversaries and uses
Yao’s garbled circuit technique [Yao86]. Mohassel and Sadeghian consider PFE
with semi-honest adversaries in [MS13]. Their generic PFE framework can be
instantiated with different secure computation protocols. The first version uses
homomorphic encryption with which they achieve linear complexity in the cir-
cuit size and the second alternative relies solely on oblivious transfers (OT),
that results in a method with O(k log k) symmetric-key operations, where k
denotes the circuit size. The OT-based construction is more desirable in prac-
tice, since using OT extension, the number of expensive public-key opera-
tions can significantly be reduced, s.t. it is independent of the number of
OTs [IKNP03,ALSZ13]. The asymptotical complexity of the OT-based construc-
tion of [MS13] and Valiant’s UCs for PFE is the same, and therefore we compare
these solutions for PFE in more detail in Sect. 4.2. Mohassel et al. extend the
framework from [MS13] to malicious adversaries in [MSS14] and show that an
actively secure PFE framework with linear complexity O(k) is feasible, using
singly homomorphic encryption.

1.2 Applications of Universal Circuits

Universal circuits have several applications, which we summarize in this section.

Private Function Evaluation. As mentioned before, UCs can be used to
securely evaluate a private function using a generic secure computation
protocol. [CCKM00] shows an application for secure computation, where evaluat-
ing UCs or other PFE protocols would ensure privacy: when autonomous mobile
agents migrate between several distrusting hosts, the privacy of the inputs of
the hosts is achieved using SFE, while privacy of the mobile agent’s code can be
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guaranteed with PFE. Privacy-preserving credit checking using garbled circuits is
described in [FAZ05]. Their original scheme cannot represent any policy, though
by evaluating a UC, their scheme can be extended to more complicated credit
checking policies. [OI05] show a method to filter remote streaming data oblivi-
ously, using secret keywords and their combinations. Their scheme can addition-
ally preserve data privacy by using PFE to search the matching data with a pri-
vate search function. Privacy-preserving evaluation of diagnostic programs was
considered in [BPSW07], where the owner of the program does not want to reveal
the diagnostic method and the user does not want to reveal his data. Example
applications for such programs include medical systems [BFK+09] and remote
software fault diagnosis, where in both cases the function and the user’s input
are desired to be handled privately. In the protocol presented in [BPSW07], the
diagnostic programs are represented as binary decision trees or branching pro-
grams which can easily be converted into a Boolean circuit representation and
evaluated using PFE based on universal circuits. Besides, PFE can be applied to
create blinded policy evaluation protocols [FAL06,FLA06]. [FAL06] utilizes UCs
for so-called oblivious circuit policies and [DDKZ13] for hiding the circuit topol-
ogy in order to create one-time programs. Since PFE using UCs utilizes general
secure computation protocols, it is possible to outsource the function and the
data to two or multiple servers (using XOR secret sharing) and then run private
queries on these. This is not directly possible with other PFE protocols, e.g.,
with the protocol presented in [KM11] or the homomorphic encryption-based
protocols from [MS13,MSS14].

Beyond Private Function Evaluation. Besides being used for PFE, UCs can be
applied in various other scenarios. Efficient verifiabile computation on encrypted
data was studied in [FGP14]. A verifiable computation scheme was proposed for
arbitrary computations and a UC is required to hide the function. [GGPR13]
make use of universal circuits for reducing the verifier’s preprocessing step.
In [GHV10], a multi-hop homomorphic encryption scheme is proposed that also
uses a universal circuit evaluator to achieve the privacy of the function. When the
common reference string is dependent on a function that the verifier is interested
in outsourcing, then the function description can be provided as input to a UC
of appropriate size. In [PKV+14,FVK+15], universal circuits are used for hiding
queries in database management systems (DBMSs). The Blind Seer DBMS was
improved in [PKV+14] by making use of a simpler UC for evaluating queries,
which does not hide the circuit topology. The authors mention that in case the
topology of the SQL formula and the circuit have to be kept private, a UC can be
utilized. As described in [Att14], the Attribute-Based Encryption (ABE) schemes
for some polynomial-size circuits can be turned into ciphertext-policy ABE by
using universal circuits. The ABE scheme of [GGHZ14] also uses UCs.

1.3 Outline and Our Contributions

In Sect. 2, we revisit the two existing size-optimized UC constructions
of [Val76,KS08b]. We put an emphasis on the asymptotically size-optimal
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method proposed by Valiant in [Val76]. This complex construction makes use of
an internal graph representation and programs a so-called edge-universal graph.
However, the algorithm for programming a universal circuit is not explicitly
described and in the presence of the included optimizations is not straightfor-
wardly applicable. In Sect. 2.1, we recapitulate Valiant’s recursive edge-universal
graph construction and describe how the construction of UCs can be reduced to
this problem. In Sect. 2.2, we briefly summarize the main building blocks of the
UC construction of [KS08b].

Optimized Size and Depth of Valiant’s UC Construction: In Sect. 3, we elab-
orate on the concrete size of Valiant’s UC construction. We refine upper and
lower bounds for the size of the edge-universal graph and approximate a closed
formula with ≤ 2% deviation from the actual size in Sect. 3.1. We include two
optimizations detailed in Sect. 3.2, achieving altogether a linear improvement of
at least 4u+4v+2k. We give hybrid constructions for cases with many inputs and
outputs in the same section. In Sect. 3.2, we compare the refined concrete size
and the depth of Valiant’s construction with that of [KS08b] and conclude the
advantage of Valiant’s method (potentially using building blocks from [KS08b]).

Valiant’s Size-Optimized UC Construction in Practice: In Sect. 4, we detail the
steps of our algorithm for a practical realization of Valiant’s UC construction
and provide an example application for PFE. We describe the internal represen-
tations and the algorithms in our UC compiler in Sect. 4.1, along with detailed
implementations of universal gates and switches. We compare our resulting PFE
with the OT-based protocol from [MS13] in Sect. 4.2. We show concrete exam-
ple circuits and elaborate on the number of symmetric-key operations and the
performance of our UC compiler.

2 Existing Universal Circuit Constructions

In this section, we summarize the two size-optimized universal circuit construc-
tions: of [Val76] in Sect. 2.1 and of [KS08b] in Sect. 2.2.

2.1 Valiant’s Universal Circuit Construction

In this section, we describe Valiant’s edge-universal graph construction for graphs
for which all nodes have at most one incoming and at most one outgoing
edge and detail how two such graphs can be used for constructing universal
circuits [Val76].

Edge-Universal Graphs. G = (V,E) is a directed graph with the set of nodes
V = {1, . . . , n} and the set of edges E ⊆ V × V . A directed graph has fanin
or fanout ℓ if each of its nodes has at most ℓ edges directed into or out of it,
respectively. Γℓ(n) denotes the set of all acyclic directed graphs with n nodes
and fanin and fanout ℓ. Further on, we require a labelling of the nodes in a
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topological order, i.e., i > j implies that there is no directed path from i to j. In
a graph in Γℓ(n), a topological ordering can always be found with computational
complexity O(n+ ℓn).

An edge-embedding of graph G = (V,E) into G′ = (V ′, E′) is a mapping
that maps V into V ′ one-to-one, with possible additional nodes in V ′, and E
into directed paths in E′, such that they are pairwise edge-disjoint, i.e., an edge
can be used only in one path. A graph G′ is edge-universal for Γℓ(n) if it has
distinguished poles {p1, . . . , pn} ⊆ V ′ and every graph G ∈ Γℓ(n) with node
set V = {1, . . . , n} can be edge-embedded into G′ by a mapping ϕG such that
ϕG : i &→ pi and ϕG : (i, j) &→ {path from pole pi to pole pj} for each i, j ∈ V .

Here, we recapitulate Valiant’s construction for acyclic edge-universal graph
for Γ1(n), denoted by Un, that has fewer than 2.5n log2 n nodes, fanin and
fanout 2 and poles with fanin and fanout 1. Valiant presents another edge-
universal graph construction with a lower multiplicative constant 2.375n log2 n.
We omit that version of the algorithm for two reasons: firstly, our aim is to
show the practicality of Valiant’s approach and secondly, including all the opti-
mizations even in the simpler construction is a challenging task in practice. The
more efficient algorithm uses four subgraphs instead of two at each recursion
and utilizes a skeleton with a more complex structure. For more details on this
improved algorithm, the reader is referred to [Val76,LMS16]. We leave showing
the practicality of the improved method as future work.

Valiant’s Edge-Universal Graph Construction for Γ1(n) Graphs: The edge-
universal graph for Γ1(n), denoted by Un, is constructed with poles {p1, . . . , pn}
with fanin and fanout 1, which are connected according to the skeleton shown
in Figs. 1a and b. The poles are emphasized as special nodes with squares, and
the additional nodes are shown as circles. The recursive construction works as
follows: the nodes denoted by {q1, . . . , q⌈ n−2

2 ⌉} and {r1, . . . , r⌊ n−2
2 ⌋} are consid-

ered as the poles of two smaller edge-universal graphs called subgraphs Q⌈n−2
2 ⌉

and R⌊n−2
2 ⌋, respectively, that are otherwise not shown. Since they are poles of

the two subgraphs with such a skeleton but not of Un, they will have at most
the allowed fanin and fanout 2: they inherit one incoming and one outgoing edge
from the outer skeleton, and at most one incoming and one outgoing edge from
the subgraph. Q⌈n−2

2 ⌉ (and R⌊n−2
2 ⌋) is then constructed similarly: the skeleton

is completed and two smaller graphs with sizes ⌈ ⌈n−2
2 ⌉−2
2 ⌉ and ⌊ ⌈n−2

2 ⌉−2
2 ⌋ (and

sizes ⌈ ⌊n−2
2 ⌋−2
2 ⌉ and ⌊ ⌊n−2

2 ⌋−2
2 ⌋) are constructed. For starting off the recursion,

U1 is a graph with a single pole while U2 and U3 are graphs with two and three
connected poles, respectively. Valiant gives special constructions for U4, U5 and
U6 and shows that it is possible to obtain the respective edge-universal graphs
with altogether 3, 7 and 9 additional nodes, respectively, as shown in Figs. 1c, d,
and e.

We recapitulate the proof from [Val76] that Un is edge-universal for Γ1(n),
such that any graph with n nodes and fanin and fanout 1 can be edge-embedded
into Un. According to the definition of edge-embedding, it has to be shown that
given any Γ1(n) graph G with set of edges E, for any (i, j) ∈ E and (k, l) ∈ E
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Fig. 1. Skeleton of Valiant’s edge-universal graph and optimized cases.
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we can find pairwise edge-disjoint paths from pi to pj and from pk to pl in Un.
As before, the labelling of nodes V = {1, . . . , n} in the Γ1(n) graph is according
to a topological order of the nodes.

Firstly, each two neighbouring poles of the edge-universal graph, p2s
and p2s+1 for s ∈ {1, . . . , ⌈n

2 ⌉}, are thought of as merged superpoles, with their
fanin and fanout becoming 2. In a similar manner, any G ∈ Γ1(n) graph can
be regarded as a Γ2(⌈n

2 ⌉) graph with supernodes, i.e. each pair (2s, 2s+ 1) will
be merged into one node in a Γ2(⌈n

2 ⌉) graph G′ = (V ′, E′). If there are edges
between the nodes in G, they are simulated with loops1. The set of edges of this
graph G is partitioned to sets E1 and E2, s.t. G1 = (V,E1) and G2 = (V,E2)
are instances of Γ1(⌈n

2 ⌉) and Γ1(⌊n
2 ⌋), respectively. This can be done efficiently,

as shown later in this section. The edges in E1 are embedded as directed paths
in Q, and the edges in E2 as directed paths in R. Both E1 and E2 have at
most one edge directed into and at most one directed out of any supernode
and therefore, there is only one edge from E1 and one from E2 to be simu-
lated going through any superpole in Un as well. Thus, the edge coming into a
superpole (p2s, p2s+1) in E1 is embedded as a path through qs−1, while the edge
going out of the pole in E1 is embedded as a path through qs in the appropri-
ate subgraph. Similarly, the edges in E2 are simulated as edges through rs−1

and rs. These paths can be chosen disjoint according to the induction hypothe-
sis. Finally, the paths from qs−1 and rs−1 to superpole (p2s−1, p2s) as well as the
paths from (p2s−1, p2s) to qs and rs can be chosen edge-disjoint due to the skele-
ton shown in Figs. 1a and b. With this, Valiant’s graph construction is a valid
edge-universal graph construction with asymptotically optimal size O(n log n),
and depth O(n) [Val76].

Valiant’s Edge-Universal Graph Construction for Γ2(n) Graphs: Given a directed
acyclic graph G ∈ Γ2(n), the set of edges E can be separated into two distinct
sets E1 and E2, such that graphs G1 = (V,E1) and G2 = (V,E2) are instances
of Γ1(n), having fanin and fanout 1 for each node [Val76]. Given the set of
nodes V = {1, . . . , n}, one constructs a bipartite graph G = (V ,E) with nodes
V = {m1, . . . ,mn,m′

1, . . . ,m
′
n} and edges E such that (mi,m′

j) ∈ E if and only
if (i, j) ∈ E. The edges of G and thus the corresponding edges of G can be
colored in a way that the result is a valid two-coloring. Having fanin and fanout
at most 2, such coloring can be found directly with the following method, used
in the proof of Kőnig-Hall theorem in [LP09b]:

1: while There are uncolored edges in G do
2: Choose an uncolored edge e = (mi,m′

j) randomly and color the path
or cycle that contains it in an alternating manner: the neighbouring
edge(s) of an edge of the first color will be colored with the second
color and vice versa.

3: end while

1 We note that these G′ graphs are constructed from the original Γ1(n) graph G in
order to define the correct embedding. Therefore, they are not required to be acyclic.
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This coloring can be performed in O(n) steps and it defines the edges in E1

and E2, s.t. E1 contains the edges colored with color one and E2 the ones with
color two and G1 = (V,E1) and G2 = (V,E2) (cf. full version [KS16]).

With this method, the problem of constructing edge-universal graphs
for Γ2(n) can be reduced to the Γ1(n) construction. After constructing two edge-
universal graphs for Γ1(n) (i.e. Un,1 and Un,2), their poles are merged and an
edge-universal graph for Γ2(n) is obtained. The merged poles now have fanin
and fanout 2, since the poles of Un,1 and Un,2 previously had fanin and fanout 1.
E1 can then be edge-embedded using the edges of Un,1 and E2 using the edges
of Un,2.

Universal Circuits. We now describe how to construct UCs by means of
Valiant’s edge-universal graph construction for Γ2(n) graphs [Val76]. Our goal
is to obtain an acyclic circuit built from special gates that simulate any acyclic
Boolean circuit with u inputs, v outputs and k gates. In the circuit, the inputs of
the gates are either connected to an input variable, to the output of another gate
or are assigned a fixed constant. Due to the nature of Valiant’s edge-universal
graph construction, we have two restrictions on the original circuit. Firstly, all
the gates must have at most two inputs and secondly, the fanout of inputs and
gates must be at most 2, i.e., each input of the circuit and each output of any
gate can only be the input of at most two later gates. This is necessary in order
to guarantee that the graph of the original circuit has fanin and fanout 2. We
note that the first restriction was present in case of the construction in [KS08b]
as well, but the output of any input or any gate could be used multiple times.
However, it was proven in [Val76] that the general case, where the fanout of
the circuit can be any integer m ≥ 2, can be transformed to the special case
when m ≤ 2 by introducing copy gates, where the resulting circuit will have
k∗ gates with k ≤ k∗ ≤ 2k + v, where k denotes the number of gates and v the
number of outputs in the circuit. We detail how this can be done in Sect. 4.1.

After this transformation, given a circuit C with u inputs, v outputs
and k∗ gates with fanin and fanout 2, the graph of C, denoted by GC consists
of a node for each gate, input and output variable and thus is in Γ2(u+ v+ k∗).
The wires of circuit C are represented by edges in GC . A topological ordering of
the gates is chosen, which ensures that gate gi has no inputs that are outputs
of a later gate gj , where j > i. The inputs and the outputs can be ordered arbi-
trarily within themselves as long as the inputs are kept before the topologically
ordered gates and the outputs after them. Even though the output nodes cause
an overhead in Valiant’s UC, they are required to fully hide the topology of the
circuit in the corresponding universal circuit. If, one can observe which gates
provide the output of the computation, it might reveal information about the
structure of the circuit, e.g. how many times is the result of an output gate used
after being calculated. We ensure by adding nodes corresponding to the outputs
that the last v nodes in Uu+v+k∗ are the ones providing the outputs. We note
that our understanding of universal circuits here slightly differs from Valiant’s,
since he constructs Uu+k∗ [Val76].
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Therefore, after obtaining GC a Γ2 edge-universal graph Uu+v+k∗ is con-
structed, into which GC is edge-embedded. Valiant shows in [Val76] how to
obtain the universal circuit corresponding to Uu+v+k∗ and how to program it
according to the edge-embedding of GC . Firstly, the first u poles become inputs,
the next k∗ poles are so-called universal gates, and the last v poles are outputs
in the universal circuit. A universal gate denoted by U(in1, in2; c0, c1, c2, c3), can
compute any function with two inputs in1 and in2 and four control bits c0, c1, c2
and c3 as in Eq. 1.

out1 = c0in1in2 ⊕ c1in1in2 ⊕ c2in1in2 ⊕ c3in1in2. (1)

The rest of the nodes of the edge-universal graph are translated into universal
switches or X gates, denoted by (out1, out2) = X(in1, in2; c) that are defined by
one control bit c and return the two input values either in the same or in reversed
order as in Eq. 2.

out1 = c in1 ⊕ c in2, out2 = c in1 ⊕ c in2. (2)

The programming of the universal circuit means specifying the control bit of each
universal switch and the four control bits of each universal gate. The universal
gates are programmed according to the simulated gates in C and the universal
switches according to the paths defined by the edge-embedding of the graph
of the circuit GC in the edge-universal graph Uu+v+k∗ . Depending on if the
path takes the same direction during the embedding (e.g. arrives from the left
and continues on the left) or changes its direction at a given node (e.g. arrives
from the left and continues on the right), the control bit of the universal switch
can be programmed accordingly. In Sect. 4.1, we detail our concrete method
for programming the universal circuit and discuss efficient implementations of
universal gates and switches.

2.2 Universal Circuit Construction from [KS08b]

The universal circuit construction from [KS08b] is built from three main build-
ing blocks (cf. full version [KS16]) that we summarize in this section. The con-
struction uses efficient building blocks for hiding the wiring of the u inputs and
v outputs, using the fact that the maximum number of inputs to a circuit with
k gates is 2k and the maximum number of outputs is k. A recursive building
block with size O(k log2 k) is constructed for hiding the wiring between the gates.

For hiding the input wiring, a selection block Su
2k≥u is used, i.e., a program-

mable block that selects for 2k outputs one of u ≤ 2k inputs. This means that
with the u inputs of circuit C, it can be programmed to assign the output wires
according to the original structure of C and assign duplicates to the rest of the
wires. The authors show an efficient implementation of selection blocks with size
O(k log k) and depth O(k) with a small constant factor [KS08b].

For hiding the output wiring, the authors use a smaller selection block. We
note that the usage of their so-called truncated permutation block is enough to



Valiant’s Universal Circuit is Practical 709

program the output wires according to the original topology of C as no dupli-
cates can occur. This truncated permutation block TPk≥v

v permutes a subset
of the maximal k inputs to the v ≤ k outputs. An efficient construction of
size O(k log v) and depth O(log k) is given in [KS08b].

A universal block UBk is placed between the input selection block and the
output permutation block. It takes care of the simulation of the gates using
universal gates and ensures that each possible wiring can be implemented in the
UC. The universal block construction is recursive, makes use of two universal
blocks of smaller size with a selection block and a mixing block (essentially a
layer of universal switches with one output) in between them. The O(k log2 k)
size of this universal block is asymptotically not optimal and its O(k log k) depth
is also a factor of log k larger than Valiant’s UC’s. Thus, despite the efficiency
of the other two building blocks, the construction from [KS08b] yields larger
circuits than Valiant’s UC in most cases. However, we note that using some of
its building blocks can be beneficial in some scenarios (cf. Sect. 3.2).

3 The Size and the Depth of Valiant’s Construction

In this section, we obtain new formulae for the size and the depth of Valiant’s
construction: the Γ1 edge-universal graph construction is described in Sect. 3.1
and the universal circuit construction in Sect. 3.2. The size of the edge-universal
graph is the number of nodes, counting all the poles and nodes created while
using Valiant’s construction. The depth of the edge-universal graph is the number
of nodes on the longest path between any two nodes. When considering UCs
and the PFE application, since XOR gates can be evaluated for free in secure
computation [KS08a], the ANDsize of the universal circuit is the number of
AND gates that are needed to realize the UC in total. The ANDdepth of the
universal circuit in this scenario is the maximum number of AND gates between
any input and output. For the sake of generality, we give the total size and depth
of Valiant’s UC construction with respect to both the AND and XOR gates that
are used. Our implementation of universal gates and switches is optimized for
PFE (cf. Sect. 4.1) and therefore uses the fewest AND gates possible. However,
the total size and depth can be relevant when optimizing for other applications,
in which case our implementation gives an upper bound that can be improved.
For instance, when XOR and AND gates have the same costs, one needs to
minimize the total number of gates instead of the number of AND gates as
in [LMS16].

3.1 The Size and the Depth of the Γ1 Edge-Universal Graph

In the skeleton, node A in Fig. 1a is redundant, since one can choose to embed the
edge (y, n− 1) as (py, pn−1) through Q, and (z, n) as (pz, pn) through R for any
y and z nodes [Val76]. Thus, the number of nodes other than poles Exact(n),
for even n becomes

Exact(n) = 2 ·Exact
(
n − 2
2

)
+ 5 · n − 2

2
. (3)
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For odd n, the construction makes use of n−1
2 poles in Q and n−3

2 poles in R.
Then, edge (y, n) is embedded as (py, pn) through Q for any y node, and node A
is again redundant. Thus,

Exact(n) = Exact

(
n − 1
2

)
+Exact

(
n − 3
2

)
+ 5 · n − 3

2
+ 3. (4)

Using these recursive formulae, given the value n, it is possible to obtain the
exact number of nodes other than poles in Un. Valiant includes optimizations
for starting off the recursion: for 1, 2, 3, 4, 5 and 6 nodes; the respective number
of additional nodes are 0, 0, 0, 3, 7 and 9 (cf. Figs. 1c, d and e). Thus, a simple
algorithm using dynamic programming based on the recursion relations of Eqs. 3
and 4 yields the exact number of nodes other than the original n poles that are
created during the edge-universal graph construction. It depends on the parity of
the input n at each iteration and unfortunately does not yield a closed formula for
the size of Valiant’s edge-universal graph construction, which is n+Exact(n).

Valiant states that using his method, an edge-universal graph for Γ1(n) can
be found “with fewer than 19

8 n log2 n nodes, and fanin and fanout 2” [Val76].
As mentioned in Sect. 2.1, we consider the more detailed algorithm that yields
the result with a slightly larger prefactor of 2.5n log2 n instead of 2.375n log2 n.
In this section, we sharpen this bound and give an approximate closed formula
for the size of the construction. We first give upper and lower bounds, and then
derive an approximation for a closed formula. For our lower bound, we consider
the case when only the formula for even numbers, i.e., Eq. 3, is considered. This
yields our lower bound of

n+5

⎛

⎝
log2 n−1∑

i=0

2i
(

n

2i+1
− 2(2i+1 − 1)

2i+1

)⎞

⎠ = 2.5n log2 n−9n+5 log2 n+10. (5)

The upper bound can be obtained similarly, considering the case when only
the formula for odd numbers with 5 ·

(
n−1
2

)
is considered

n+ 5

⎛

⎝
log2 n−1∑

i=0

2i
(

n

2i+1
− 2i+1 − 1

2i+1

)⎞

⎠ = 2.5n log2 n − 4n+ 2.5 log2 n+ 5. (6)

Figure 2 depicts our upper and lower bounds along with Valiant’s upper
bound on the same construction for up to 100 000 nodes. We observe that the
mean of our bounds is very close to the exact number of nodes. Figure 3 shows
that already after a couple of hundreds of poles, it only slightly deviates from
the exact number of nodes Exact(n). Thus, we accept

size(Un) ≈ 2.5n log2 n − 6.5n+ 3.75 log2 n+ 7.5 (7)

as a good approximation of the closed formula for the size of the construction,
noting that an estimated deviation of at most 2% compared to the exact number
of nodes, i.e., ε ≤ 0.02 · size(Un) may occur.
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Fig. 2. Our upper and lower bounds for the size of Valiant’s edge-universal graph
construction for Γ1(n) graphs, along with Valiant’s upper bound on the same con-
struction and the exact size Exact(n), considering the size of the embedded graph
n ∈ {1, . . . , 100 000} (Color figure online).

The depth of the edge-universal graph, i.e., the maximum number of nodes
between any two nodes is defined by the number of nodes between p1 and pn
in the skeleton (cf. Figs. 1a and b). Thus, depth(Un) = 3n − 3 for even n and
depth(Un) = 3n − 2 for odd n.

3.2 The Size and the Depth of Valiant’s Universal Circuit

As described in Sect. 2.1, a universal circuit is constructed by means of an edge-
universal graph for graphs with fanin and fanout 2, which is in turn constructed
from two Γ1 edge-universal graphs with poles merged together and thus taken
only once into consideration. When constructing a UC, the number of inputs u,
the number of outputs v and the number of gates k is public. We set k∗ as the
number of gates in the equivalent fanout-2 circuit, where k ≤ k∗ ≤ 2k + v, in
order to be able to later fairly compare with the UC construction of [KS08b]. We
consider k∗ as the public parameter instead of k, since without the knowledge
of the original number of simulated gates, it does not reveal information about
the simulated circuit. If the original k is public, one can hide k∗ by setting it
to its maximal value 2k + v. Thus, using Valiant’s UC construction, a Γ2 edge-
universal graph with u+v+k∗ poles is constructed and thus, our approximative
formula for the size of the Γ2 edge-universal graph corresponding to the graph of
the circuit would become 2 · size(Uu+v+k∗)− (u+ v+ k∗) and the exact number
would be u+ v+ k∗ +2 ·Exact(u+ v+ k∗), i.e., the u+ v+ k∗ merged poles of
the two edge-universal graphs plus the exact number of nodes other than poles.
Therefore, the size of Valiant’s UC is
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size(UCValiant
u,v,k∗ ) ≈[5(u+ v + k∗) log2(u+ v + k∗) − 15(u+ v + k∗)

+ 7.5 log2(u+ v + k∗) + 15] · size(X) + k∗ · size(U)
(8)

and the depth stays

depth(UCValiant
u,v,k∗ ) ≈ [2(u+ v + k∗) − 2] · depth(X) + k∗ · depth(U). (9)

When transforming the Γ2 edge-universal graph into a UC, the first u poles
are associated with inputs, the last v poles with outputs, and the k∗ poles
between are realized with universal gates (cf. Eq. 1) and their programming is
defined by the corresponding gates in the simulated circuit. The rest of the nodes
of the edge-universal graph are translated into universal switches (cf. Eq. 2),
whose programming is defined by the edge-embedding of the graph of the circuit
into the Γ2 edge-universal graph. Thus, the size and depth of Valiant’s UC can
be directly derived from the size of the Γ2 edge-universal graph. However, we
include two optimizations to obtain a smaller size of the UC. The first opti-
mization improves already the size of the edge-universal graph and the second
optimization is applied when translating the edge-universal graph into a UC
description (cf. Sect. 4.1).

1. Optimization for Input and Output Nodes: We observe that obviously
circuit inputs need no ingoing edges and circuit outputs need no outgoing
edges. Therefore, since u, v and k∗ are publicly known, we optimize by delet-
ing nodes that become redundant while canceling the edges going to the
first u (input) and coming from the last v (output) nodes. Depending on the
parity of u, v and u + v + k∗, the number of redundant switching nodes is
u+ v−3±1 in both Γ1 edge-universal graphs that build up the graph of the
UC. Therefore, we have, on average, 2(u + v − 3) redundant nodes, which
number we use in our calculations further on. This optimization also affects
the depth by, on average, u+ v − 3.
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2. Optimization for Fanin-1 Nodes: We observe that in the skeleton of
the Γ1 edge-universal graph construction there is a fanin-1 node (denoted
with B in Figs. 1a and b). Such fanin-1 nodes exist in the base-cases for
a small number of poles as well (cf. Figs. 1c, d and e). These nodes are
important to achieve fanin and fanout 2 of each nodes in the graph, but can
be ignored and replaced with wires when translated into a circuit description,
essentially resulting in the same UC. According to Valiant’s construction,
these gates would translate into universal switches with one real input (and
an other arbitrary one). Instead, we translate each of them into two wires
and therefore set the second input to the same as the first one. Since at least
one such node can be ignored in each subgraph when nodes are translated
into gates, this results in altogether around

2 ·

⎛

⎝
log2(u+v+k∗)−1∑

i=0

2i
⎞

⎠ − 1 = 2(u+ v + k∗) − 3 (10)

less gates for the two Γ1 edge-universal graphs. This improvement has no
effect on the depth of the construction.

Since both the size and the depth are dependent on the underlying represen-
tation of the circuit building blocks (of the universal gate U and of the universal
switch or X gate), and the secure computation protocol, we express the size of
the universal circuit with the size and depth of U and ofX as parameters. Includ-
ing the above optimizations of altogether 4(u + v) + 2k∗ − 9, the approximate
formula for the size of Valiant’s optimized UC construction becomes

size(UC opt
u,v,k∗) ≈[5(u+ v + k∗) log2(u+ v + k∗) − 17k∗ − 19(u+ v)

+ 7.5 log2(u+ v + k∗) + 24] · size(X) + k∗ · size(U).
(11)

To obtain the exact size of the UC, we use the recursive relations depicted in
Eqs. 3 and 4 and include our optimizations. Thus, we obtain

sizeexact(UC opt
u,v,k∗) =[2 ·Exact(u+ v + k∗)

− 4(u+ v) − 2k∗ + 9] · size(X) + k∗ · size(U).
(12)

From the depth of the edge-universal graph, the depth of the UC becomes

depth(UC opt
u,v,k∗) ≈ [u+ v + 2k∗ + 3] · depth(X) + k∗ · depth(U). (13)

Depending on the application, size(X) and size(U) as well as depth(X) and
depth(U) can be optimized. Due to the PFE application, where XOR gates
can be evaluated for free, we assess the ANDsize and ANDdepth of our AND-
optimized implementations of universal gates and switches (cf. Sect. 4.1). In gen-
eral, a universal gate can be realized with 3 AND gates (and 6 XOR gates), and
ANDdepth of 2 (total depth of 6). Universal switches can be realized with only
one AND gate (and 3 XOR gates), and ANDdepth of 1 (total depth of 3) [KS08a].
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For private function evaluation, the size and the depth of U can be fur-
ther optimized depending on the underlying secure computation protocol. In
case the SFE implementation uses Yao’s garbled circuit protocol [Yao86], both
ANDsize(U) and ANDdepth(U) can be minimized to 1, due to the fact that in
some garbling schemes the evaluator does not learn the type of the evaluated
gate such as in case of garbled 3-row-reduction [NPS99]. Therefore, a universal
gate can be implemented with one 2-input non-XOR gate [PSS09].

Optimized Hybrid Universal Circuit Construction: We investigate if
hybrid methods utilizing building blocks of both UC constructions, i.e., of
both [Val76] summarized in Sect. 2.1 and [KS08b] in Sect. 2.2, could yield bet-
ter size. The simulation of the k gates of the original circuit is asymptotically
more efficient using Valiant’s UC construction due to the logarithmic factor,
despite the overhead caused by taking the equivalent fanout-2 circuit with k∗

gates, where k ≤ k∗ ≤ 2k + v. However, we calculate if the modular approach
of [KS08b] using a selection block Su

m≥u for selecting the input variables or a
truncated permutation block TPk∗≥v

v for the output variables results in a smaller
size.

Placing a selection block on top of Valiant’s UC with m universal gates
would imply a selection block Su

m≥u which is then programmed to direct the
u inputs of the circuit to the proper inputs of the m universal gates. Depending
on how the output nodes are represented, m is either 2(k∗ + v) for the case
when including the outputs in Valiant’s construction or 2k∗ for the construction
with a truncated permutation block. In the latter case, TPk∗≥v

v takes care of
permuting a subset of the outputs of the k∗ gates, resulting in the v outputs
of the UC. A selection block Su

m≥u has size u+m
2 log2 u +m log2 m − u + 1 and

depth 2 log2 u + 2 log2 m + m − 2, and a truncated permutation block TPk∗≥v
v

has size k∗+v
2 log2 v − 2v+ k∗ +1 and depth log2 k∗ + log2 v − 1 [KS08b] (cf. full

version [KS16]).
Let us take three scenarios into consideration, depending on the number of

inputs u and the number of outputs v. The number of gates in the circuit to be
simulated is k and the number of gates in the equivalent fanout-2 circuit is k∗

with k ≤ k∗ ≤ 2k + v.

1. Constant I/O Case: u = c1 constant, v = c2 constant: If both u and v
are constant values c1 and c2 respectively, as is the case in many applications
that compute a non-trivial function with relatively few inputs and outputs,
the size of the selection block becomes ≈ 2k∗ log2 k∗ + (2 + log2 c1)k∗ and
the size of the truncated permutation block is ≈ (0.5 log2 c2 + 1) k∗. With
Valiant’s UC construction, the overhead caused by a constant number of
inputs and outputs is around 5(c1 + c2) log2 k∗. The depth of Valiant’s UC
is only affected with constant overhead, while the depth of the selection and
permutation blocks are ≈ 2k∗ + 2 log2 k∗ and ≈ log2 k, respectively. Thus,
both for the inputs and the outputs, Valiant’s UC is an asymptotically better
solution in the case with a constant number of inputs and outputs.
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2. Many Inputs: u ∼ k, v = c constant: For many inputs where u is around
the number of gates k and we have a constant number of c outputs, we include
these c nodes in Valiant’s UC instead of using a truncated permutation block
due to the same reasoning as in the previous case. However, a selection block
can be constructed to direct k inputs to k∗ + c universal gates. Thus, its size
becomes ≈ 2k∗ log2 k∗ + k∗ log2 k + 0.5k log2 k + 2k∗ − k + 3c log2 k∗ and its
depth ≈ 2k∗ + 2 log2 k∗ + 2 log2 k. In case of Valiant’s UC construction, k
inputs result in an overhead of ≈ 5k log2 k − 9k + 5c log2 k for the size and
≈ k for the depth, since a large part (up to a half) of the circuit is built in
order to hide the input wiring. Therefore, in this scenario it is often worth
to use a hybrid method, utilizing the selection block from [KS08b] for input
selection. Our many inputs hybrid construction places a selection block on
top of a UC with k∗+c universal gates and has approximate size when u ∼ k
and v is constant c

size(UCmany I
k,c,k∗ ) ≈ [7k∗ log2 k

∗ + k∗ log2 k + 0.5k log2 k − k − 15k∗

+ (7.5 + 5c) log2 k
∗ + 3c log2 k

∗ +O(1)] · size(X) + k∗ · size(U)
(14)

and approximate depth

depth(UCmany I
k,c,k∗ ) ≈ [4k∗ + 2 log2 k

∗ + 2 log2 k +O(1)] · depth(X)

+k∗ · depth(U).
(15)

3. Maximal I/O Case: u ∼ 2k, v ∼ k: For circuits with u ∼ 2k inputs and
v ∼ k outputs, we discuss the possibility of using both an input selection
block and an output permutation block. The size of the selection block is
≈ 2k∗ log2 k∗ + k∗ log2 k+ k log2 k+3k∗ − k and its depth becomes ≈ 2k∗ +
2 log2 k∗ +2 log2 k, which is more beneficial (when it comes to the size) than
the ≈ 10k log2 k − 12k size overhead and ≈ 2k depth overhead in Valiant’s
construction caused by 2k inputs (up to half of the UC is constructed for
inputs only). The truncated permutation block has size ≈ 0.5k∗ log2 k +
0.5k log2 k + k∗ − 2k and depth ≈ log2 k∗ + log2 k, while the same amount
of outputs in Valiant’s construction introduces at least 5k log2 k − 9k new
switches with depth of ≈ k. Thus, for the case when the maximal 2k inputs
and k outputs are considered, we conclude that it is advantageous to use
our maximal I/O hybrid construction, utilizing Valiant’s graph construction
for the k∗ gates [Val76], a selection block for the inputs and a truncated
permutation block for the outputs [KS08b]. This yields an approximate size
when u ∼ 2k and v ∼ k

size(UCmax I/O
2k,k∗,k ) ≈[7k∗ log2 k

∗ + 1.5k∗ log2 k + 1.5k log2 k − 13k∗ − 3k

+ 7.5 log2 k
∗ +O(1)] · size(X) + k∗ · size(U)

(16)

and an approximate depth

depth(UCmax I/O
2k,k∗,k ) ≈ [4k∗ + 3 log2 k

∗ + 3 log2 k +O(1)] · depth(X)

+k∗ · depth(U).
(17)
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Fig. 4. Comparison between the sizes of the universal circuit constructions for
k∗ = k ∈ {0 , . . . , 50 000} gates, considering the three scenarios: constant I/O with
constant number of inputs and outputs, many inputs with ∼ k inputs and constant
outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs (Color figure online).

We conclude that in case of a large number of inputs and outputs it is
beneficial to construct a hybrid UC, making use of both existing construc-
tions (cf. Sects. 2.1 and 2.2). Most practical applications have input and out-
put with constant size and only some specific applications use input size lin-
ear in the number of gates (e.g. simple computations on large databases).
Thus, we consider Valiant’s construction as the most beneficial for general
purposes, however we have shown, that one can optimize the construction for
many inputs or outputs by adding selection or truncated permutation blocks
from [KS08b].

Comparison with the Universal Circuit Construction from [KS08b].
In [KS08b], a universal circuit construction was proposed with approximate size
1.5k log22 k + 2.5k log2 k. This was calculated with the doubled size of the uni-
versal switches, not yet considering the free-XOR optimizations of [KS08a]. We
recalculated the size of the construction with our additional optimization for
the outputs described in Sect. 2.2. We give our detailed calculations in the full
version [KS16] and summarize its exact size here as

size(UC [KS08b]
u,v,k ) = [0.75k log22 k + 2.25k log2 k + (0.5 + k) log u+

(0.5k + 0.5v) log v + 5k − u − 2v] · size(X) + k · size(U),
(18)

and from [KS08b] we know that its depth is

depth(UC [KS08b]
u,v,k ) = [k log2 k + 2k + 7 log2 k + 2 log2 u+

log2 v − 14] · k · depth(U).
(19)
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Fig. 5. Comparison between the depths of the universal circuit constructions
for k∗ = k ∈ {0, . . . , 50 000} gates, considering the three scenarios: constant I/O with
constant number of inputs and outputs, many inputs with ∼ k inputs and constant
outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs (Color figure online).

It was concluded in [KS08b] that this construction outperforms Valiant’s
construction for circuits with up to 5 000 gates. However, this was achieved using
the assumption that Valiant’s UC has size ≈ 9.5(u+ 2v+ 2k) log2(u+2v+2k),
which can vary between two to four times its actual size. On the one hand, a
factor of two of this difference is due to the free-XOR optimizations in [KS08a].
On the other hand, [KS08b] used the maximal k∗ = 2k+v in their approximation.
In Sect. 4.2, we show on concrete example circuits that k∗ stays significantly
below this upper bound. The construction described in detail in Sect. 2.1 has a
larger constant factor 5, but due to the logarithmic factor it outperforms the
construction from [KS08b] (Sect. 2.2) already for a few hundred gates in the
constant I/O case. Figures 4 and 5 compare the sizes and depth of the different
UC constructions, respectively in the three scenarios described above, with the
lowest possible gate number k∗ = k. When considering the hybrid approach, the
method corresponding to the given scenario is indeed always the most efficient
construction for many inputs and/or outputs. We give a comparison for the upper
bound case k∗ = 2k+v, for the sizes of all universal circuit constructions for well-
known circuits from [TS15] and compare their structure in the full version [KS16].

4 Implementing Valiant’s Universal Circuit in Practice

In this section, we detail the challenges that we faced while demonstrating the
practicality of Valiant’s universal circuit construction. We show how to construct
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a universal circuit from a standard circuit description and how to program it
accordingly. We validate our results with an implementation, creating a novel
toolchain for private function evaluation, using two existing frameworks as fron-
tend and backend of our application. We emphasize that our tool for construct-
ing and programming UC is generic and can easily be adapted to other secure
computation frameworks or other applications of UCs listed in Sect. 1.2.

4.1 Our Tool for Universal Circuit Construction and Toolchain
for Private Function Evaluation

The architecture of our toolchain for PFE using universal circuits is shown
in Fig. 6. In this section, we describe its different artifacts and its use of the
Fairplay [MNPS04] and ABY [DSZ15] frameworks. Our implementation is avail-
able online at http://encrypto.de/code/UC.

Step 1. Compiling Input Circuits from High-Level Functionality:
Due to its easy adoptability, we decided to use the Fairplay
compiler [MNPS04,BNP08] with the FairplayPF extension [KS08b] to trans-
late the functionality described in the high-level SFDL format to the Fairplay
circuit description called Secure Hardware Definition Language (SHDL). The
FairplayPF extension already converts circuits with gates of an arbitrary fanin
into gates with at most two inputs, which is required for Valiant’s construction
as well. However, in case of Valiant’s UC construction, there is another restric-
tion on the input circuit. It has to have fanout 2, i.e., the outputs of all the gates
and inputs can only be used as the input of at most two later gates.

In case the input circuit does not follow this restriction, an algorithm places
a binary tree in place of each gate with fanout larger than 2, following Valiant’s
proposition: “Any gate with fanout x+2 can be replaced by a binary fanout tree
with x+ 1 gates” [Val76, Corollary 3.1]. This is done using so-called copy gates,
i.e., identity gates, each of them eliminating one from the extra fanout of the
original gate. An upper bound can be given on the number of copy gates. The
class of Boolean functions with u inputs and v outputs that can be realized by
acyclic circuits with k gates and arbitrary fanout, can also be realized with an
acyclic fanout-2 circuit with k ≤ k∗ ≤ 2k+v gates [Val76, Corollary 3.1]. We give
concrete examples in Sect. 4.2 on how this conversion changes the input circuit
size for practical circuits and show that in most cases, the resulting number of
gates remains significantly below the upper bound 2k + v.

Step 2. Obtaining the Γ2 Graph of the Circuit: From the SHDL description
of a C circuit with fanin and fanout 2, the Γ2 graph GC of the circuit C can
be directly generated as described in Sect. 2.1: with the number of inputs u, the
number of outputs v and the number of gates k∗ in circuit C, GC has u+ v+ k∗

nodes and the wires are represented as edges in the graph. Then, the first u
nodes in the topological order correspond to the inputs, the last v nodes to the
outputs and the nodes in between them to the k∗ ordered gates. We note that
since C had fanin and fanout 2, the resulting GC graph is in Γ2(u+ v + k∗).
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into Uu+v+k∗

5. Program Bits
Input p

3. Edge-Universal
Graph Uu+v+k∗

5. Universal Circuit
Description UC u,v,k∗

6. SFE Framework
(ABY)

Input x

Output UC (x, p)

Our UC Compiler

P1 P2

Fig. 6. Our toolchain for universal circuits and private function evaluation.

Therefore in GC , each node can have at most two incoming edges, one defined
to be the first and the other the second. It is possible in the modified SHDL
circuit description that an internal value becomes two times the first or two
times the second input of gates. This is due to the fact that in the original
SHDL circuit with arbitrary fanout, a value could be the input of arbitrary
number of later gates. Transforming the circuit to a fanout-2 circuit by adding
copy gates allows a value to be an input only two times, but the order of the
inputs is fixed. Therefore, in such a case when a value is the second time the
same input to a gate (i.e., first or second), besides the two inputs, the two middle
bits of the function table of the gate must be reversed as well (i.e., to compute
f(in1, in2) instead of f(in2, in1)) for the correct programming of the universal
circuit in Step 5.
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Step 3. Generating Γ2 Edge-Universal Graph Un: Knowing the number
of input bits u, the number of gates k∗ and the number of output bits v one
can construct the corresponding edge-universal graph Un, where n = u+ v+ k∗,
with out input-output optimization from Sect. 3.2. We note that no knowledge
is necessary about the topology or the gate tables in circuit C for this step. As
we described in Sect. 2.1, two edge-universal graphs for Γ1(n), i.e. Un,1 and Un,2,
are merged in order to obtain an edge-universal graph for Γ2(n), such that the
poles are merged and the edges coming into and going out from them become
as follows: the edges in Un,1 will be the first input and output for each pole,
the edges in Un,2 will be the second input and output. For efficiency reasons, we
directly generate the merged edge-universal graph, i.e., an edge-universal graph
for Γ2(n), with the poles as common nodes.

We include our optimization for the input and output nodes from Sect. 3.2
and Valiant’s optimizations for n ∈ {2, 3}, but do not consider Valiant’s opti-
mizations for n ∈ {4, 5, 6} (cf. Figs. 1c, d, and e). These special cases lead to a
specific edge-embedding for the nodes and result in linear improvement only in
very rare cases. Moreover, with our second optimization from Sect. 3.2, we ignore
most of the extra nodes when the graph is translated into a universal circuit
description, i.e., we have for n = {4, 5, 6} only {3, 5, 8} additional nodes other
than poles, respectively, in our implementation which is already an improvement
over Valiant’s original optimizations.

We note that the edge-universal graph (with undefined function tables and
control bits for the universal switches) can be publicly generated. However, the
party programming it has to either generate or receive a copy of it for program-
ming the control bits according to the topology of the simulated circuit (i.e., to
edge-embed GC into Un).

Step 4. Programming Un According to an Arbitrary Γ2(n) Graph: The
Γ2 graph of the circuit GC with n nodes is partitioned into two Γ1(n) graphs GC

1

and GC
2 which are embedded into the two edge-universal graphs for Γ1(n) that

build up Un. Valiant proved in [Val76] that for any topologically ordered Γ1(n)
graph, for any (i, j) ∈ E and (k, l) ∈ E edges there exist edge-disjoint paths
in Un between the ith and the jth poles and between the kth and the lth poles.
We described Valiant’s method in Sect. 2.1 and here we show the algorithm that
uniquely defines these paths in Un.

For the description of our algorithm, we first define a Γ1(n) supergraph,
which is a Γ1(n) graph with additionally a binary tree of Γ1 graphs of decreas-
ing size. These Γ1 graphs uniquely define the embedding of the edges into Un.
When embedding an edge (i, j) of the topologically ordered graph G into the
edge-universal graph, one needs to construct the supergraph of G as described in
Algorithm1 and then look at the binary tree in the supergraph. The path of
the edge (i, j) defines the edge-embedding uniquely. This means that if edge
(⌈ i

2⌉, ⌈ j
2⌉ − 1) is in the left subgraph of G, then it can be embedded through

subgraph Q in Un, otherwise it is in the right subgraph of G and can be
embedded through subgraph R in Un. The unique embedding happens through
{r⌈ i

2 ⌉, r⌈ j
2 ⌉−1} or through {q⌈ i

2 ⌉, q⌈ j
2 ⌉−1}, utilizing the unique shortest path

between them, through subpoles further identified by smaller subgraphs of G.
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Algorithm 1. Supergraph(G)
Input: Γ1(n) graph G with set of nodes V = {1, . . . , n}
Output: Γ1(n) supergraph

1: Create a graph H with ⌈n
2 ⌉ − 1 nodes ◃ H Γ2 graph (with possible loops)

2: if there exist an edge (i, j) in G and ⌈ j
2⌉ − 1 ≥ ⌈ i

2⌉ then

3: Add edge
(
⌈ i
2⌉, ⌈ j

2⌉ − 1
)

in H ◃ each pair of nodes in G is one node in H
4: end if
5: Partition H into two Γ1 graphs G1 of size ⌈n

2 ⌉ − 1 and G2 of size ⌊n
2 ⌋ − 1 using

Kőnig’s theorem as in §2.1
◃ in odd case, the (e, ⌈n

2 ⌉ − 1) edge in H for arbitrary e will be added in G1

6: if size(G1) ̸= 0 then
7: Supergraph(G1)
8: Store G1 as the left subgraph of G
9: end if

10: if size(G2) ̸= 0 then
11: Supergraph(G2)
12: Store G2 as the right subgraph of G
13: end if
14: delete H
15: return G

When the embedding is done (cf. full version [KS16]), for defining the control
bits, each node x has at most two nodes that have ingoing edges to x, one is
represented as the left parent and one as the right parent of x in the edge-
universal graph. The two consecutive nodes are also saved as left and right
children of x. Now, when x is a switching node and we take edges (v, x) and (x,w)
in the path, we save for x if parent v and child w are on the same or on the
opposite side in the edge-universal graph. This defines the control bit of each
universal switch in the translated universal circuit, where left and right parent
and child translate to first and second input and output, respectively. We note
that in order to program Un correctly, we require that if x is the left (right)
parent of v in the edge-universal graph, then v is the left (right) child of x.

Step 5. Generating the Output Circuit Description and the Program-
ming of the Universal Circuit: After embedding the graph of the simulated
circuit into the edge-universal graph Un, we write the resulting circuit in a file
using our own circuit description. In the edge-universal graph, each node stores
the program bit resulting from the edge-embedding (control bit c of the corre-
sponding universal switch in Eq. 2) and each pole stores four bits corresponding
to the simulated circuit (the four control bits of the function table, c0, c1, c2, c3
in Eq. 1, their order possibly changed in Step 2). Thus, after topologically order-
ing Un, one can directly write out the gate identifiers into a circuit file and the
program bits to a programming file.

Our circuit description format starts with enumerating the inputs and ends
with enumerating the outputs. We have universal gates denoted by U , universal
switches denoted by X or Y depending on the number of outputs (X with two
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outputs and Y with one). We note that we replace any gates that have only one
input by wires in the UC, thus achieving our fanin-1 node optimization from
Sect. 3.2. The wires are represented in the following manner:

U in1 in2 out1
X in1 in2 out1 out2 (20)
Y in1 in2 out1

denotes that wire out1 (and possibly out2) is coming from a gate with input wires
in1 and in2. The program bits are not represented in the circuit format, but in a
separate file, for each universal gate we save a four-bit number representing the
control bits and for each universal switch we store the control bit. The output
nodes are outputs of Y universal switches and are marked in the end of the
file as O o1 o2 . . . ov. The circuit and its programming are given in plain
text files.

Step 6. Evaluating Universal Circuits for PFE in ABY: As an example
application of UCs, we implement PFE using SFE of a universal circuit. We
adapted the ABY secure two-party computation framework [DSZ15] for this
purpose. Firstly, since ABY uses the free-XOR optimization from [KS08a], we
construct universal gates and switches with low ANDsize and ANDdepth given
in Sect. 3.2. With the cost metric we consider, X and Y gates have the same
AND complexity, optimized in [KS08a] and are obtained as

out1 = Y (in1, in2; c) = (in1 ⊕ in2)c ⊕ in1
(out1, out2) = X(in1, in2; c) = (e ⊕ in1, e ⊕ in2) with e = (in1 ⊕ in2)c (21)

with ANDsize and ANDdepth of 1 for both universal switches. X gates are
realized with one additional XOR gate compared to Y gates.

Our efficient implementation of generic universal gates uses Y gates yielding

out1 = U(in1, in2; c0, c1, c2, c3) = Y [Y (c0, c1; in2), Y (c2, c3; in2); in1] (22)

with ANDsize(U) = 3 and ANDdepth(U) = 2. This universal gate implemen-
tation is generic and works in all secure computation protocols. However, for
Yao’s garbled circuits protocol, one can further optimize it to ANDsize(U) =
ANDdepth(U) = 1, as in some garbling schemes such as the garbled 3-row-
reduction [NPS99] the gate being evaluated remains oblivious to the evaluator.

After constructing the efficient building blocks, the output circuit file of our
UC compiler is parsed, a circuit is generated accordingly and programmed with
the input program bits. We conclude that our toolchain is the first implementa-
tion of Valiant’s size-optimized universal circuit that supports efficient private
function evaluation.

4.2 Comparison of Our PFE-Toolchain with Other PFE Protocols

Mohassel et al. in [MS13] design a generic framework for PFE and apply it
to three different scenarios: to the m-party GMW protocol [GMW87], to Yao’s
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Table 1. The number of symmetric-key operations using different PFE protocols:
Valiant’s UC with SFE, the universal circuit construction from [KS08b] or Mohassel
et al.’s OT-based method from [MS13]. u, v and k denote the number of inputs, outputs
and gates in the simulated circuit, and k∗ denotes the number of gates in the equivalent
fanout-2 circuit.

Circuit u k v k∗ − k ( k∗

k ) Valiant [KS08b] OT-based

[MS13]

AES-non-exp 256 31 924 128 14 539 (1.46) 1.150 · 107 2.797 · 107 6.243 · 106

AES-expanded 1 536 25 765 128 11 089 (1.43) 9.211 · 106 2.206 · 107 4.943 · 106

DES-non-exp 128 19 464 64 12 290 (1.63) 7.502 · 106 1.560 · 107 3.639 · 106

md5 512 43 234 128 22 623 (1.52) 1.700 · 107 3.995 · 107 8.681 · 106

add 32 64 187 33 58 (1.31) 35 512 55 341 19 939

comp 32 64 150 1 1 (1.01) 19 384 40 222 15 424

mult 32x32 64 6 995 64 5 079 (1.73) 2.522 · 106 4.647 · 106 1.184 · 106

Branching 18 72 121 4 3 (1.02) 17 312 30 994 11 994

CreditCheck 25 50 1 6 (1.12) 5 056 9 348 4 198

MobileCode 80 64 16 0 (1.00) 12 528 13 727 5 644

garbled circuits [Yao86] and to arithmetic circuits using homomorphic encryp-
tion [CDN01]. Both the two-party version of their framework with the GMW
protocol and the solution with Yao’s garbled circuit protocol has two alterna-
tives: using homomorphic encryption they achieve linear complexity O(k) in
the circuit size k and when using a solution solely based on oblivious trans-
fers (OTs), they obtain a construction with O(k log k) symmetric-key opera-
tions. The OT-based construction in both cases is more desirable in practice,
since using OT extension the number of public-key operations can be reduced
significantly [IKNP03,ALSZ13].

Since the asymptotical complexity of this construction and using Valiant’s
UC for PFE is the same, we compare these methods for PFE. We revisit the
formulas provided in [MS13] for the PFE protocol based on Yao’s garbled circuits
and elaborate on the number of symmetric-key operations when the different
PFE protocols are used. Mohassel et al. show that the total number of switches
in their framework is 4k log2(2k) + 1 that are evaluated using OT extension,
for which they calculate 8k log2(2k)+8 symmetric-key operations together with
5k operations for evaluating the universal gates with Yao’s protocol. We count
only the work of the party that performs most of the work, i.e., 4k symmetric-
key operations for creating a garbled circuit with k gates and 3 symmetric-key
operations (two calls to a hash function and one call to a pseudorandom function
(PRF)) for each OT using today’s most efficient OT extension of [ALSZ13].
Hence, according to our estimations, the protocol of [MS13] requires 12 log2(2k)+
4k + 12 symmetric-key operations.
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In the same way, we assume that in our case, for evaluating both the universal
gates and switches, the garbler needs 4k symmetric-key operations. Thus, for a
fair comparison, we essentially update Table 4 from the full version of [MS13,
Appendix J.1], where Valiant’s UC size was calculated with assumed k∗ = 2k+v,
without calculating 4 operations for the garbling.

We took our example circuit files of varying size in Table 1 from two different
sources and elaborate on the resulting number of symmetric-key operations using
the different constructions. The first 7 circuits we obtained from the function
set of [TS15] and the last three from the FairplayPF extension of the Fairplay
compiler [MNPS04,KS08b]. The example circuits that we took from [TS15] had
to be converted to our desired SHDL format, which was a necessary step in order
to be able to elaborate on the performance of these more complicated circuits
as well. We included the INV gates in the function table of the consecutive
gate and therefore, resulted in smaller gate numbers k for the equivalent SHDL
circuits with arbitrary fanout. Then, these SHDL circuits were considered as
input circuits for our tool.

We now compare the size of the three two-party PFE protocols: the two UC-
based PFE with secure computation and the OT-based method of [MS13]. We
assess our findings in Table 1. We note that our numbers are estimations, i.e., we
do not consider that [MS13] works with circuits made up solely of NAND gates.
Since Valiant’s UC construction depends also on the number of gates with fanout
more than 2 in the original circuit, we include the number of copy gates, (k∗ −k)
in the table. We emphasize the ratio between the new number of gates k∗ and the
original number of gates k and conclude that in general circuits, it is well below
the maximal k∗

k ∼ 2. The size of the UC construction from [KS08b] obviously
makes their method less efficient, in our examples using more than twice as many
symmetric-key operations as the method with Valiant’s UC and four times as
many as Mohassel et al.’s efficient OT-based method [MS13]. We conclude that
universal circuits are not the most efficient solution to perform PFE, however, we
show the feasibility of generating and evaluating UCs simulating large circuits.
We emphasize that even though the PFE-specific protocol from [MS13] achieves
better results for PFE, universal circuits are generic and can be applied for
various other scenarios (cf. Sect. 1.2), and the most efficient UC construction is
Valiant’s construction.

Our Experimental Results. We validated the practicality of Valiant’s univer-
sal circuit construction with an efficient implementation. We ran our experiments
on two Desktop PCs, each equipped with an Intel Haswell i7-4770K CPU with
3.5GHz and 16 GB RAM, that are connected via Gigabit-LAN and give our
benchmarks in Table 2. We are able to generate UCs up to around 300 000 gates
of the simulated circuit, i.e., which results in billions of gates in the UC. Until
now, the only implementation of universal circuits was given in [KS08b], which
is outperformed by Valiant’s construction already for a couple of hundred gates
(cf. Figs. 4 and 5) due to its asymptotically larger complexity. We show the real
practicality of UCs through experimental results proving the efficiency of our
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Table 2. Running time and communication for our UC-based PFE implementation
with ABY. We include the compile time, the I/O time of the UC compiler, and the
evaluation time (in milliseconds) and the total communication (in Kilobytes) between
the parties in GMW as well as in Yao sharing.

Circuit UC Compile UC I/O GMW Yao

Time Time Time Communic. Time Communic.

(ms) (ms) (ms) (KB) (ms) (KB)

AES-non-exp 2 909.2 6 331.2 5 522.08 137 561.13 2 349.35 88 417.61

AES-expanded 2 103.7 5 063.6 4 136.72 109 033.79 1 878.75 70 097.48

DES-non-exp 1 596.2 4 173.5 2 695.51 76 644.38 1 310.52 48 180.69

md5 4 043.5 8 785.4 7 041.12 169 558.83 3 547.68 110 043.59

add 32 11.4 63.8 31.97 457.77 26.49 224.77

comp 32 5.8 34.1 29.94 340.23 8.90 159.73

mult 32x32 328.9 1 443.2 1 092.46 31 053.53 539.98 18741.85

Branching 18 4.8 31.4 26.23 307.77 17.34 145.87

CreditCheck 1.2 11.4 26.25 113.35 5.67 45.15

MobileCode 3.2 26.3 25.71 202.50 28.16 103.45

implementation of PFE with the ABY framework [DSZ15]. Furthermore, due to
its asymptotically smaller depth, we are also able to evaluate our generated UCs
with the GMW protocol [GMW87], whereas the construction from [KS08b] was
only evaluated with Yao’s garbled circuit protocol. We do not directly compare
our runtimes with the method of [MS13], since to the best of our knowledge,
their framework has not yet been implemented.

Converting from circuit descriptions and writing into and reading out from
files slows down the program significantly, but it still achieves good performance
for practical circuits such as AES and DES. Our implementation in ABY can
evaluate most of the circuits in both the GMW and Yao’s protocols, but for some
examples it runs out of memory (e.g. SHA-256). However, improvements on SFE
protocols imply improvements on UC-based PFE frameworks as well. As can be
seen in Table 2, the evaluation time and the communication in case of Yao’s
garbled cirucit protocol is about a factor of two smaller than that of the GMW
protocol. This difference is due to the more efficient universal gate construction
with only one gate for the case of Yao’s protocol in contrast to the universal
gates used in the GMW protocol with ANDsize = 3 and ANDdepth = 2.
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