
RAID-PIR: Practical Multi-Server PIR

Daniel Demmler
Engineering Cryptographic

Protocols Group, EC SPRIDE
TU Darmstadt, Germany

daniel.demmler@ec-spride.de

Amir Herzberg
Computer Science Department

Bar-Ilan University, Israel
and TU Darmstadt, Germany

amir.herzberg@gmail.com

Thomas Schneider
Engineering Cryptographic

Protocols Group, EC SPRIDE
TU Darmstadt, Germany

thomas.schneider@ec-spride.de

ABSTRACT
Private Information Retrieval (PIR) allows to privately re-
quest a block of data from a database such that no infor-
mation about the queried block is revealed to the database
owner. With the rapid rise of cloud computing, data is often
shared across multiple servers, making multi-server PIR a
promising privacy-enhancing technology.

In this paper, we introduce RAID-PIR, an efficient and
simple multi-server PIR scheme, which has similar approach
to RAID (Redundant Arrays of Inexpensive Disks) systems.
Each server stores only a part of the database, its computa-
tional complexity depends only on this part, and multiple
blocks can be queried efficiently in parallel. RAID-PIR im-
proves efficiency over known PIR protocols, using only very
efficient cryptographic primitives (pseudo-random generator).
We demonstrate that RAID-PIR is practical and well-suited
for cloud deployment as it reduces the communication as
well as the computational workload per server.

Keywords
private information retrieval; RAID; redundant array of inex-
pensive disks; privacy enhancing technologies; cloud security;
applied cryptography; secure storage

1. INTRODUCTION
Nowadays, the need for privately requesting files from

the Internet is bigger than ever. Data can be encrypted
during transport, thus effectively preventing a man-in-the-
middle attacker from getting access to the data. However, a
content provider needs to know what files a user requested,
in order to deliver the content. Therefore, the user must
trust the content provider to keep his request safe and to
be protected against attacks. This trust cannot easily be
established, especially because today many websites are not
directly hosted by the content provider, but instead located
in a Content Distribution Network (CDN) or on machines
in the cloud. Furthermore, even if a content provider is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCSW’14, November 7, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-3239-2/14/11 ...$15.00.
http://dx.doi.org/10.1145/2664168.2664181.

trustworthy, he can be forced, e.g. by government agencies,
to reveal information about the data that its users requested.

A solution to this problem is Private Information Re-
trieval (PIR), which allows to protect the privacy of the users’
queries. While PIR schemes with a single server exist, to-
day’s most efficient PIR schemes use multiple servers with the
assumption that not all of them collude; our scheme further
improves efficiency compared to known (multiple-server) PIR
schemes. In particular, these servers could be run on differ-
ent machines operated by different cloud providers, different
administrators and/or in different regions or jurisdictions.

PIR Applications.
There is a multitude of applications for PIR schemes, with

different reasons for hiding the identity of the item requested
by the user. A typical motivation is to prevent disclosure of
personal or business interest in specific information from a
collection, e.g., or patents, medical articles, company evalua-
tions, product descriptions, legal precedences or otherwise.
For example, knowledge about patents requests may allow a
competitor to identify directions of a company, and knowl-
edge about requests for medical papers by an individual may
expose an illness. Cappos [Cap13] applies PIR for a different
motivation, namely, to hide identity of specific software up-
date being retrieved, since knowing the requested update may
allow an attacker to identify vulnerable system (i.e., a system
using vulnerable, not yet updated, software). PIR can also
be used to privately query messages from an encrypted mail-
box [SCM05, BKOI07, MOT+11] and is a building block in
the recently proposed private presence service DP5 [BDG14].
A final motivation, from [GHS14], is to allow caching of
encrypted (web) objects by an untrusted CDN, preventing
the CDN from learning details by identifying the requested
objects.

Redundant Array of Inexpensive Disks (RAID).
We use the name RAID-PIR, since our work shares design

approach and ideas with RAID storage systems. RAID (Re-
dundant Array of Inexpensive Disks), introduced in [PGK88],
is a method to virtualize data storage that combines multiple
storage units (e.g., disk drives), into one logical unit. The
central idea of RAID is that by properly combining multi-
ple units (drives), we can emulate a larger storage device,
and/or achieve improvements in speed, reliability, etc., which
would be infeasible or more expensive to build ‘from scratch’.
RAID defines multiple modes, providing a low-cost approach
to improve different goals, mainly performance and/or pro-
tection against disk failures (reliability). All modes combine

the results from the multiple disks; they do it in different
ways, but the combining operation is always very simple and
efficient. In particular, for improving performance, data is
striped over multiple disks that can be accessed in parallel.
To protect against disk failures, data is either mirrored on
multiple disks or additional parity information is stored that
allows data recovery. Further details on different RAID levels
are given in Appendix A.

Our multi-server PIR scheme, RAID-PIR, has similar prop-
erties as a RAID system: the data is distributed to multiple
servers (cf. RAID disks) for better performance, where each
server stores only parts of the database. The data from the
different servers is combined in a simple, efficient operation.
The use of multiple server PIR implies that the entire system
is trustworthy, even if some, but not all of the servers (cf.
disks) are corrupted.

Our Contributions.
We present RAID-PIR, a family of multi-server PIR schemes

that improve upon and generalize Chor et al.’s PIR proto-
col [CKGS95] and have several desirable properties. RAID-
PIR has a balanced workload amongst all participating servers,
reduces the communication complexity, and uses only highly
efficient cryptographic primitives, namely a pseudo-random
generator. RAID-PIR has several parameters that allow
adaption to the specific deployment scenario and trust as-
sumptions: the number of available servers and the maximum
number of servers that can collude. In RAID-PIR, we reduce
the storage requirements for the servers as each server is com-
parable to a disk in a striped RAID that stores only a part
of the database and computes only a part of the answer to a
user’s query. The user can even query multiple blocks of data
in parallel for higher efficiency. Communication and compu-
tation requirements are reduced – in particular the upstream
communication from the client to the servers. We provide
an open-source Python implementation1 and performance
benchmarks for our PIR schemes.

In Section 5, we discuss several deployment aspects, includ-
ing preserving privacy when reading multiple-blocks concur-
rently, identifying the necessary blocks for a given query/file,
and ensuring object integrity and availability in spite of server
failures. Our approach, of building such features on top of
RAID-PIR, allows us to maintain a very simple and extremely
efficient PIR design, while providing practical solutions to
failures, which other designs solve by non-trivial extensions
and modifications to the PIR scheme, e.g., [DGH12, OG11,
Gol07].

Outline.
We summarize preliminaries in §2. We detail Chor et

al.’s PIR protocol and our RAID-PIR protocols in §3 and
experimentally compare these protocols in §4. We discuss
applications and deployment aspects of RAID-PIR in §5, give
related work in §6, and conclude in §7.

2. PRELIMINARIES
In this section we give preliminaries on PIR, explain the

multiple-servers PIR scenario (addressed in this work), and
introduce notations used throughout this paper.

1https://github.com/dd23/RAID-PIR

2.1 Private Information Retrieval
Private Information Retrieval (PIR) is a term introduced

by Chor et al. [CKGS95]. It refers to the privacy-preserving
querying of data by a client from one or multiple data sources,
such that this data sources cannot infer any information
about the query. In contrast to the client’s query, the avail-
able data in the database is public and does not need to be
protected from the client. This allows for a trivial solution:
Sending the entire database to the client, who then performs
his query locally. However, this may be impractical or ex-
pensive, for large databases. PIR schemes allow clients to
retrieve data without exposing their privacy, and requiring
less communication (cf. to sending entire DB), albeit with
computational overhead. We focus on multiple-servers PIR
schemes, which have lower computation complexity.

Multiple Server PIR Scenario.
The content provider CP provides data and distributes it

to k servers Si with 1 ≤ i ≤ k. This is common practice
for distributing data over the Internet in a large scale for
the purpose of load balancing and scalability. The direct
communication between clients and CP should be kept to a
minimum. A client C wants to retrieve data from CP and
gets forwarded to several servers that deliver the requested
data to him. The PIR protocols we consider here, are single-
round protocols where C sends a query qi to server Si from
whom he receives the answer ai. An example setting with
k = 3 servers is depicted in Fig. 1.

The properties a PIR scheme must satisfy are that the
client C can recover his desired data (correctness), but nei-
ther the content provider CP nor any combination of less
than r servers Si learns anything about the data the client
is interested in from the client’s queries (security).

CP

S2S1 S3

C

q1

q2

a3
a1

a2
q3

Figure 1: Example PIR Setting with servers
S1,S2,S3. Dashed lines represent offline communi-
cation (see §5.2).

2.2 Notations
We denote the content provider as CP, the k servers as Si

with 1 ≤ i ≤ k, and the client as C. The database DB consists
of B blocks of size b bits each. The block at position j is
denoted as blockj . We partition the B blocks into k chunks,
each containing B

k
blocks of the database.

The protocol makes operations over vectors of size B; in
particular, for c ∈ [1, B], the (B-bits) elementary vector ec
has a single bit set (to one) at position c, and all other bits
are reset (zeros). For a given B−bit vector α, the notation
α[i] refers to the i-th chunk of α, i.e., the B

k
bits beginning

with (i− 1) · B
k

; cf. §3.2.1.

https://github.com/dd23/RAID-PIR

From §3.2.2, our PIR schemes also use a redundancy pa-
rameter 2 ≤ r ≤ k, s.t. the scheme is secure as long as the
number of colluding servers is less than r.

Finally, in §3.2.3, we improve the performance using pseudo-
random generator PRG, with security parameter σ. For
simplicity, we use PRG(s, i) to denote the ith ‘block’ of B

k
bits output by PRG for seed s ∈ {0, 1}σ.

3. PROTOCOL OVERVIEW
Our work is based on Chor et al.’s linear summation PIR

system for multiple servers [CKGS95], which we denote as
CKGS in the following. Following earlier work, e.g., [Cap13],
we query blocks of data instead of single bits to improve
efficiency. The overall goal is to allow privacy-preserving
retrieval of data and outsourcing of workload from CP to
the PIR servers Si. After introducing a slightly modified
variant of the original CKGS scheme in §3.2.1, we present
our improved PIR schemes.

3.1 Setup
Before clients can privately retrieve data, the content

provider CP has to setup the database DB of his files and
distribute it to the servers. This is realized by partitioning
all available data into B blocks of size b bits and sending
them to the servers. The mapping of actual files to blocks is
discussed in §4.1.

3.2 Privately Requesting Files
The client C is interested in one or multiple blocks and

wants to request them in a privacy-preserving fashion from
the available servers.

3.2.1 A Variant of CKGS [CKGS95]
In the following we describe a slightly modified variant of

the original CKGS scheme that has the same properties in
terms of complexity, but with the structure of our improved
protocols presented in the following sections. For complete-
ness, we give the original CKGS protocol in Appendix B.

As in [CKGS95], the client C is interested in privately
querying blockc and represents this plaintext query as the
elementary vector ec (i.e., a vector of B bits where the c-th
bit is set to one and all other bits are zero). Also, the queries
received by each server, appear random; only the XOR of all
queries equals to the plaintext query ec. However, differently
from [CKGS95], in our variant all servers and queries are
‘symmetrical’, as follows.

As depicted in Fig. 2, we partition each query into k chunks,
where k is the number of servers. A chunk, i.e., a column
in Fig. 2, spans B/k adjacent blocks of the DB and hence
contains B/k bits. As shown in Fig. 2, the query sent to
server i contains random bits rndi[x] for all the chunks x 6= i.
Chunk i is denoted flipi, and is computed to cancel out
all the other (randomly chosen) chunks rndj [i] sent to other
server j, leaving exactly ec[i], i.e.,

flipi ← ec[i]⊕
⊕

j∈{1,...,k}\i

rndj [i],

where ec[i] is the i-th chunk of elementary vector ec, cf.
Fig. 2.

Each request qi that C sends to server Si for i ∈ {1, . . . , k}
contains one flip chunk and k−1 randomly chosen rnd chunks,
and hence has a total length of B bits. The idea of distribut-

ing the flip chunks to multiple queries can be seen as analo-
gous to RAID-5 (Rotating Parity), where parity information
is distributed over all disks (cf. Appendix A).

As in [CKGS95], the servers’ responses have length of b bits
each, and are the XOR of all blocks that the user requested
in his query, i.e. if the bit at index j was set in the client’s
query, the server XORs blockj into his response. When the
client has received the replies from all k servers he calculates
the XOR of all responses and gets blockc, as all other blocks
are contained an even number of times and cancel out due
to the XOR. See Fig. 2.

flip1 rnd1[2] rnd1[3] rnd1[4]

flip2 rnd2[3] rnd2[4]rnd2[1]

flip3 rnd3[4]rnd3[1] rnd3[2]

flip4rnd4[1] rnd4[2] rnd4[3]

00100 00000 00000 00000

q1

q2

q3

q4
⊕

e3 =

k
=

4
q
u
er

ie
s

Figure 2: CKGS: The queries qi sent by the client
to servers Si and their XOR. Here, k = 4 servers and
B = 20 blocks. The block that the client is interested
in has index 3, as the third bit is set to 1.

3.2.2 Using more than r servers
As our first optimization of Chor et al.’s protocol we intro-

duce the redundancy parameter r with 2 ≤ r ≤ k which gives
the minimum number of servers that need to collude in order
to recover the block that is queried. In our protocol depicted
in Fig. 3, the redundancy parameter specifies the number
of chunks in each query and how often the chunks overlap
throughout all queries, thus setting the storage requirements
of the servers and the security of our scheme. Each of the k
servers stores only (r/k) ·B blocks of the DB, and each query
now consists of r chunks, with a length of B/k bits each. A
small r parameter allows to reduce the percentage of the DB
each server has to store and the length of each query to a frac-
tion of r/k, but also reduces the protection against colluding
malicious servers. Hence, the redundancy parameter r allows
a trade-off between storage/communication and security and
can be chosen in accordance with the deployment scenario
and trust assumptions. For r = k we obtain exactly the
variant of the original CKGS scheme described in §3.2.1; for
better performance, use more servers (with fixed r).

Our idea stems from the striping technique used in RAID
systems, where data is distributed over multiple disks in
order to improve efficiency. However, to achieve security we
have to also rely on mirroring, in order to protect against
colluding servers. Our partially overlapping structure of
chunks is comparable to a hybrid of RAID-0 (Striping) and
RAID-1 (Mirroring), cf. Appendix A. An example of the
partitioning into chunks and the use of the redundancy pa-
rameter r is depicted in Fig. 3.

3.2.3 SB: Single Block Queries with Seed Expansion
As the next optimization we make use of a pseudo ran-

dom generator (PRG) to further improve the communication
complexity by reducing the size of the queries. The first
chunk of each query is chosen as before and sent as a bit

flip1 rnd1[2] rnd1[3]

flip2 rnd2[3] rnd2[4]

flip3 rnd3[4]rnd3[1]

flip4rnd4[1] rnd4[2]

00100 00000 00000 00000

q1

q2

q3

q4
⊕

e3 =

r = 3 chunks

r
=

3
ch

u
n
k
s

k
=

4
q
u
er

ie
s

Figure 3: PIR with Redundancy Parameter r:
Queries qi sent by the client to server Si and their
XOR. Here, k = 4 servers, redundancy parameter
r = 3, and B = 20 blocks. The block that the client is
interested in has index 3, as the third bit is set to 1.

string, while the remaining r − 1 chunks are generated from
a PRG and expanded from a seed s of length σ bits, where σ
is the symmetric security parameter (set to 128 bit in our
implementation). The seed expansion is depicted in Fig. 4.

This technique reduces the communication complexity, as
soon as the symmetric security parameter σ is smaller than
B (r − 1) /k, at the cost of the evaluation of few symmet-
ric cryptographic operations, and is very effective for large
databases with a high number of blocks B. The efficiency
of the PIR scheme is improved, since typically an end user’s
upstream is significantly slower than his downstream. There-
fore, reducing the amount of data a user has to send to the
servers will reduce the overall protocol runtime. We argue
that, for large number of blocks B, the additional costs of
evaluating a small number of symmetric cryptographic op-
erations, e.g., by instantiating the PRG with AES, are very
low compared to the bandwidth savings, especially due to
the massive increase of computational power and the avail-
ability of the AES-NI instruction set for efficient evaluation
of symmetric cryptographic operations. See results in §4.

The servers’ replies are identical to the ones in the original
protocol. The trick is to flip the bit at the beginning of the
query, in the chunk that is not generated by a PRG. All
queries start with such a chunk, and therefore all servers are
equally likely to receive the query with the flipped bit.

We can combine this technique with the redundancy pa-
rameter to further increase efficiency. We refer to the scheme
that uses chunks, the redundancy parameter r, and the seed
expansion to query a one block as single block scheme SB.
A formal description of SB is given in Algorithm 1.

From §3.2.3, our schemes use a security parameter

flipi si

flipi rndi[i mod k + 1] rndi[i+ r − 2 mod k + 1]

PRG(si)

q′i

qi

r − 1 chunks

Figure 4: SB: Query expansion from seed si.

3.2.4 MB: Multiple Block Queries
Finally, we extend the protocol to allow C to request mul-

tiple blocks with a single query. For this, the servers reply
with one block per query chunk and calculate the XOR of
each response block only within each chunk. The size of the
reply from each server to C is increased from b bits to r ·b bits.
This approach has the limitation, that the requested blocks
must be located in different locations of the DB, as they must
be queried in different chunks. Every chunk can contain at
most one block of data, comparable to the original scheme,
where every block has to be queried separately. However,
we argue that the assumptions of blocks being located in
different chunks is practical, especially for requests of a large
amount of data. An example of the parallel query is depicted
in Fig. 5.

We refer to the scheme, that incorporates all of our opti-
mizations and that allows to query up to k blocks with one
query as multi block scheme MB. A formal description of
MB is given in Algorithm 1.

flip1 rnd1[2] rnd1[3]

flip2 rnd2[3] rnd2[4]

flip3 rnd3[4]rnd3[1]

flip4rnd4[1] rnd4[2]

00100 00010 00010 10000

q1

q2

q3

q4
⊕

e3|e9|e14|e16 =

r = 3 chunks

k
=

4
q
u
er

ie
s

Figure 5: MB: The queries qi sent by the client to
server Si and their XOR. Here, k = 4 servers, redun-
dancy parameter r = 3, and B = 20 blocks. The client
queries for the blocks 3, 9, 14, and 16 in parallel.

This optimization is again inspired by RAID, since blocks
can be read from multiple disks in parallel. However, similar
to RAID-5 (Rotating Parity) and RAID-0 (Striping), blocks
can only be queried in parallel if they are located on different
disks, cf. Appendix A.

3.3 Analysis
In the following we analyze the complexity, correctness,

and security of our PIR schemes.

3.3.1 Complexity and Efficiency
The complexities and efficiency of the PIR schemes de-

scribed in §3.2 are summarized in Tab. 1.
Our improved PIR protocols are well-suited for cloud-based

applications where customers are charged for server compu-
tation and communication to/from the cloud. In contrast to
the original Chor protocol [CKGS95], where multiple servers
are used only to increase the security of the protocol, our
protocols can use multiple servers for better efficiency, sim-
ilar to the properties of a RAID system: for k servers, the
upload communication from the client to each server is only
about 1/k-th of the original communication and when using
redundancy parameter r = 2, each server loads and processes
only about 1/k-th of the blocks in the database.

We note that queries are sent to the servers concurrently
with responses sent back from the servers; hence, the commu-

Algorithm 1 Description of our PIR schemes for retrieving a single block (SB) (cf. §3.2.3) or multiple blocks in parallel (MB)
(cf. §3.2.4). See notations in §2.2.

Input: (SB) single block blockc or (MB) k blocks blockc[i] for i ∈ {1, . . . , k}

1. C randomly picks the seeds si ∈R {0, 1}σ for i ∈ {1, . . . , k}.

2. C expands each seed si to generate the r− 1 chunks rndi[j]← PRG(si, j) for j ∈ {(i mod k) + 1, . . . , (i+ r−
2 mod k) + 1}.

3. For each i, C sets the chunk flipi as the XOR of the r chunks rndj [i] in column i:
flipi ←

⊕
j rndj [i] with j = (i− 1 mod k) + 1, (i− 2 mod k) + 1,

4. (SB) C identifies the flip chunk that contains blockc (the block C is interested in) and flips the bit at the
corresponding position.

(MB) C identifies all flip chunks that contain a blockc[i] he is interested in and flips the bit at the corresponding
positions.

5. C sends the queries q′i consisting of one flip chunk and one seed si to the servers Si.

6. Si expands his seed si to generate r − 1 random chunks rndi[j] = PRG(si, j) for j ∈ {(i mod k) + 1, . . . , (i+
r − 2 mod k) + 1} and gets his full query qi, as depicted in Fig. 4.

7. (SB) Si calculates his answer ai ←
⊕

x∈qi blockx and sends answer ai to C.
(MB) For each of the r chunks j, Si calculates ai[j]←

⊕
x∈qi[j] blockx and sends all ai[j] blocks to C.

8. (SB) C calculates the plaintext block by XORing the k answers: blockc ←
⊕

1≤i≤k ai.

(MB) For each chunk j, C calculates the plaintext block by XORing the r answers in column j :
blockc[j]←

⊕
i ai[j] with i = (j − 1 mod k) + 1, (j − 2 mod k) + 1,

Table 1: Comparison of complexity and efficiency of the original Chor PIR scheme with our optimizations
from §3.2. k: #servers, r: redundancy parameter (2 ≤ r ≤ k), B: #blocks, b: block size, σ: security parameter.

[CKGS95] §3.2.2 SB §3.2.3 MB §3.2.4

Upload: Query length |qi| [bit] B (r/k) ·B (1/k) ·B + σ (1/k) ·B + σ
Download: Answer length |ai| [bit] b b b r · b
Server Computation [#blocks to load and XOR] B/2 (r/k) ·B/2 (r/k) ·B/2 (r/k) ·B/2
Server Storage [#blocks] B (r/k) ·B (r/k) ·B (r/k) ·B
Client Computation [#pseudorandom bits] (k − 1) ·B (r − 1) ·B (r − 1) ·B (r − 1) ·B
Result blocks per query 1 1 1 k
Security Level (max. #colluding servers) k − 1 r − 1 r − 1 r − 1
Maximum communication efficiency b/(kB + kb) b/(rB + kb) b/(B + kσ + kb) b/(B/k + σ + b)

nication delay is essentially the maximum, rather than the
sum, of the upload (query) and download (response) times.

3.3.2 Correctness
Our proposed PIR schemes are adaptations of the origi-

nal CKGS scheme. The main difference is that we do not
compute the XOR over the entire database, but over smaller
chunks (column-wise). Therefore, correctness carries over
from the original CKGS scheme [CKGS95].

3.3.3 Security
The security of the schemes of §3.2.1, §3.2.2 follows trivially

using the same proof as of the original scheme, see [CKGS95].
Intuitively, for each column i, the flipi chunk is the XOR of
r − 1 random (rnd) values. Therefore, these flip chunks can
be seen as an r-out-of-r XOR-based secret sharing of either
the zero-vector or an elementary vector with the single bit
set to one in which the client is interested. From the security
of the secret sharing scheme follows that a collusion of up to
r − 1 servers cannot gain any information about the block
the client is interested in.

The security of the SB scheme, of §3.2.3, follows by stan-
dard reduction to the security of the PRG used. Namely, if
the SB scheme is leaks information, then we can distinguish
between the strings produced by the PRG vs. truly random
strings of the same length, by running the protocol with the
given bits and checking if the attacker can learn information
(which is proven impossible using truly random bits, see
above and in [CKGS95]).

The security of the MB scheme, of §3.2.4, also follows by
a simple reduction argument, this time reducing to the SB
scheme. Namely, assume an attacker can leak information
from the MB scheme (but not from the SB scheme); for
simplicity, assume this holds for the case shown in Fig. 5.
Then the attacker runs four queries against the SB scheme,
each time for block from a different chunk, and then XORs
the views received by the corrupt servers; this is equivalent
to a single run of the MB algorithm, so we can use the attack
on MB to leak information - which contradicts the security of
the SB scheme. Note that for convenience, we ignored here
the fact that both SB and MB use pseudorandom strings
(which can be easily dealt with as explained in previous
paragraph).

Note that to additionally achieve security against external
man-in-the-middle attackers, the client can connect to the
servers via secure channels.

3.4 Further Improvements
The implementations of all PIR schemes described in §3.2

can be further improved as detailed next.

Precomputation at Servers.
It is possible to reduce the computational complexity for

the servers at the cost of additional storage as proposed
in [BIM00]. For this, each server precomputes all possible
combinations of XOR for subsets of length ` of the data
and stores the results on disk. This technique reduces each
server’s computational workload by a factor of ` while in-
creasing its storage by a factor of 2`/`.

Memory Efficient PIR.
The PIR schemes can be implemented with low memory for

the client. This makes them well-suited for resource-limited

devices, such as web browsers, smartphones, embedded sys-
tems, or smartcards. For this, we instantiate the PRG with
a block cipher in counter mode and iteratively compute the
queries column-wise and chunk by chunk.

4. IMPLEMENTATION & BENCHMARKS
We base our implementations on the publicly available code

of upPIR [Cap13] which implements the original protocol
of Chor et al. [CKGS95]. We modified the existing Python
code and implemented our improved PIR protocols described
in §3.2: support for redundancy parameter r (§3.2.2), smaller
upload by using a PRG for the queries (SB – §3.2.3), and
enabling parallel requests (MB – §3.2.4). We set the security
parameter to σ = 128 and instantiate the PRG with AES128-
CTR. In §4.2 we compared performance of our different
variants to that of [CKGS95], and in §4.3 we compared to
the best-effcient robust PIR algorithm (to the best of our
knowledge), [Gol07], using the implementation in [GDL+14].

4.1 System Description
The upPIR system has two phases, a setup phase run be-

tween the content provider and the servers, and a PIR phase
run between the client and the servers as described next.

Setup Phase.
The content provider CP sets up the database DB of his

files by partitioning all available data into B blocks of size b.
For this, CP creates a manifest file that maps every file to one
or multiple blocks. Every block has a unique index and its
content can optionally be hashed with a secure hash function
in order to guarantee its integrity and thereby allowing to
identify malicious servers. The manifest file is static and
identical for all clients and servers. The partitioning is done
in a compact way, such that files can start in the middle
of a block, thus wasting no storage space. The files to be
distributed and the manifest file are sent to all servers.

PIR Phase.
The client C requests the manifest file in order to determine

what data is available and for creating his query to the servers.
With the manifest file, he identifies the blocks he is interested
in and runs the PIR protocol with the servers (cf. §3.2).

4.2 Benchmark Results
We benchmark our PIR schemes for different parame-

ters and deployment scenarios. We deploy the k servers
as m3.large instances on Amazon EC2. The client is a
local desktop computer with 4 GB RAM and an AMD hexa-
core CPU with 3.3 GHz. As DB we use a recent release of
Ubuntu security updates, containing 964 updates adding up
to a total size of 3.8 GB. The average file size of the DB is
4 MB, while the median file size is only 267 kB, as many
small patches are contained. We run each experiment 5 times
and give the average runtimes.

Varying Block Size.
In our first set of experiments, shown in Fig. 6, we fix the

number of servers to k = 3 and the redundancy parameter to
r = 2. We vary the block size b from 16 kB to 4 MB depicted
on the x-axis and plot the total runtime for the different
PIR schemes on the y-axis (CKGS §3.2.1, r = 2 §3.2.2,
SB §3.2.3, and MB §3.2.4). We use two different network

Figure 8: Server computation time [s] for varying
number of servers k, redundancy parameter r = 2,
and block size b = 128 kB.

settings between the client and EC2: a consumer grade DSL
connection (1 MBit/s upstream and 16 MBit/s downstream)
depicted in the left diagrams (Fig. 6(a) and Fig. 6(c)) and a
WAN connection (350 MBit/s for both up- and downstream)
depicted in the right diagrams (Fig. 6(b) and Fig. 6(d)). The
latency averaged to 30 ms for both network settings. In the
upper diagrams (Fig. 6(a) and Fig. 6(b)) we query for a large
file that is stored consecutively in the DB (file size 8.5 MB)
and in the lower diagrams (Fig. 6(c) and Fig. 6(d)) we retrieve
10 small files (total size of files 2.9 MB) that are distributed
across different chunks of the database. Throughout all
measurements the same 10 small files are used to achieve
comparable results.

As can be seen from the diagrams, our improved PIR
protocols result in larger runtime improvements when the
upstream of the network connection is limited (left diagrams
for DSL) as the client sends less data (cf. Upload in Tab. 1).
Our multi-block PIR scheme MB described in §3.2.4 is ben-
eficial when querying for multiple files distributed across
multiple chunks (lower diagrams for 10 files).

The computation improvements for the servers cannot be
seen clearly in these experiments as for parameters r = 2
and k = 3 the servers have in our protocols only 2/3 of
the workload of the original Chor PIR scheme (cf. Server
Computation in Tab. 1). Therefore, we vary the number of
servers k in the following experiments.

Server Computation Workload.
Next we measure the total time that one server needs to

respond to a client’s query for either the large consecutive
file or the 10 small files that are distributed throughout
the DB. This server computation time includes expanding
the seed (for SB and MB), reading the blocks, and calcu-
lating their XOR. The results are depicted in Fig. 8. Our
schemes benefit from an increasing number of servers k as
the computation time for each server decreases, whereas the
original CKGS scheme has a constant server workload that
is independent of k. The runtimes for r = 2 and SB are
almost identical (for Cons. File and 10 Files, respectively),
showing that the seed expansion with a PRG has negligible
computation overhead.

Varying Number of Servers.
Finally, we vary the number of servers and measure the

total runtime for the entire PIR protocol, including network
communication. From the results depicted in Fig. 7 we ob-
serve that increasing k only improves the total runtime if the
network bandwidth is high enough. For the DSL scenario
the higher communication complexity, caused by the down-
stream from each server, also increases the overall runtime.
For the WAN scenario the performance increase is clearly
visible, but limited due to the increased communication and
computation requirements for the client. The runtime for
CKGS increases slightly, because the client has to wait for
all k servers to respond and latency in the cloud can vary.

4.3 Comparison with [Gol07]
We evaluate the recent implementation of [GDL+14, Gol07]

on the same machines and data that we used to benchmark
our code and depict the results in Fig. 9. All results are for
a WAN network connection, therefore the results in Fig. 9(b)
and Fig. 6(d) are comparable. We show results for their
implementation of CKGS, which achieves very similar per-
formance as our CKGS implementation. We compare it with
a version of their protocol that allows to query one block
per query sequentially and a version that allows to query
k − 1 blocks per query in parallel. The resulting runtimes
are slower than the plain CKGS protocol. However their im-
plementation scales very well with increasing k, and for large
number of servers, may be competitive with ours; more signif-
icantly, [Gol07] ensure robustness against malicious servers,
which we only address by the higher-layer mechanisms of
§5.3.

5. APPLYING RAID-PIR
PIR protocols can be used for different applications and

scenarios, where clients wish to hide the storage locations
they are reading. However, the applications may have ad-
ditional requirements, beyond these provided by basic PIR
schemes. Some of these requirements may require signifi-
cant extensions to existing PIR schemes, or a new scheme;
for example, several works study PIR schemes which are
robust to benign and/or byzantine failures [Gol07, DGH12,
DG14]. Addition of such properties to RAID-PIR is subject
for further research.

However, as we show below, some requirements can be
achieved quite easily, by extending RAID-PIR or adding a
layer on top of it. In the following, we discuss private retrieval
of multi-block objects, PIR lookup mechanisms (identifying
the block(s) necessary for a particular query/object), and
finally object integrity, availability and accountability.

5.1 Private Multi-Block Object Retrieval
PIR schemes allow customers to retrieve an object, with-

out allowing the servers to know which object was retrieved
among the set of objects stored; in the case of multi-server
PIR schemes such as RAID-PIR, this holds as long as the
number of corrupt servers is less than r. However, many
applications involve a collection of objects with significantly
different lengths. In this case, using a block size equal to the
object size involves significant communication and computa-
tion overhead. To reduce this overhead, we would normally
use a smaller block size, s.t. retrieving a large object would
imply retrieval of all the blocks in the objects. However,
when using such a scheme, the number of blocks retrieved

(a) DSL, Large Consecutive File (b) WAN, Large Consecutive File

(c) DSL, 10 Small Files (d) WAN, 10 Small Files

Figure 6: Runtimes [s] for varying block sizes b [kB] with k = 3 servers and redundancy parameter r = 2.

(a) DSL (b) WAN

Figure 7: Runtimes [s] for varying number of servers k, redundancy parameter r = 2, and block size b = 128 kB.

(a) Runtimes for varying numbers of k for blocksize b = 128 kB
and the query of 10 random files.

(b) Runtimes for different Blocksizes b for k = 3 servers and
the query of 10 random files.

Figure 9: Runtimes [s] for [Gol07] for varying number of servers k and different block sizes b.

may allow the attacker to identify the object (if it has unique
number of blocks) or to know that the object is within the
limited set of objects with the same number of blocks.

A trivial way to deal with this concern is to use very large
blocks, such that every object will fit within a single block.
Alternatively, clients may always retrieve a fixed number of
blocks, including blocks they are not interested in, possibly
using the parallel block query (§3.2.4) to reduce the overhead;
by using a smaller block size, this design is less wasteful in
storage, although it has the same communication cost as the
use of blocks of the same total size. Hence, these solutions
fix the privacy concern, at the cost of more communication.

In many scenarios, an alternative would be to address
the privacy concern by increasing latency. Specifically, if a
system has some known distribution of requests, say in rate
of β blocks per second (taking into account the total number
of blocks in requested objects), then a possible way to hide
identity of requested objects would be to request objects at
fixed rate of β blocks per second (or a bit higher, to avoid
excessive latency), delaying requests if necessary and adding
‘dummy’ requests if none are present. Again, this combines
well with the parallel block query (§3.2.4), allowing to retrieve
k blocks with each request, improving request (upstream)
bandwidth and processing overhead. Further optimizations
may be possible, especially when the distribution of requests
and of object-sizes is known or has certain properties.

5.2 PIR Lookup Mechanisms
PIR schemes allow clients to retrieve a block by specifying

the block number, without exposing the block number to
eavesdroppers or to the PIR servers. However, in many
applications, clients do not necessarily know in advance
the block number containing the information they need;
instead, they have some higher-layer identifier such as a URL
or file name. How can clients learn the block number(s)
corresponding to the object identifier without exposing their
interest in a particular object?

One solution is used in upPIR [Cap13]: the content provider
maintains a manifest file, mapping all object identifiers to
the corresponding block numbers. Clients always retrieve
the entire manifest file (from the origin or any server, or
even from another location). The manifest file can also allow

to ensure integrity by including a collision-resistant hash of
each object, and the origin signs the manifest file itself.

This use of such manifest file is fine, as long as its size is
reasonable; it may be less appropriate to ensure privacy for
queries to a huge collection of many (smaller) items, such as
the Domain Name System, as proposed, e.g., in [ZHS07]; in
such cases, the distribution of the manifest file may cause
significant overhead, esp. if it has to be updated periodically.

In such cases, where distributing a manifest file causes sig-
nificant overhead, it may be better to use other approaches. A
simple approach is to store an object with identifier (URL) i,
in block h(i) where h is a hash function; this has obvious
limitations, in particular, no control over placement. More
elaborate schemes for object lookup in PIR based on key-
words or identifiers were studied, e.g., [CGN98].

5.3 Object Integrity, Availability and Account-
ability

PIR schemes do not necessarily ensure integrity. Namely,
a benign or malicious (byzantine) failure in one or more
of the servers, may result in clients receiving corrupt data.
Some PIR schemes are robust, i.e., designed to handle benign
failures, or even byzantine failures, e.g., [DG14, DGH12].
Our RAID-PIR constructions, however, are not robust to
server failures; it is an interesting challenge to adopt them to
achieve robustness (with comparable performance). However,
we note that clients may easily recover from failure of few
servers, by using only the operative servers in the protocol.
We now show how to take advantage of this and use RAID-
PIR to ensure integrity, availability and accountability.

We first explain how to ensure object integrity: one nat-
ural solution is for the origin to sign every object, and to
provide the signature as part of the object from the servers.
Alternatively, when a manifest file is used, the origin can only
sign the manifest file, and include therein a collision-resistant
hash value for each object (cf. [Cap13]). In some applications,
the content ‘belongs’ to a specific customer of the origin; in
this case, the origin may use a Message Authentication Code
(MAC), for improved efficiency (cf. to signature schemes).

The above mechanisms only allow the client to detect
when it receives a corrupted object; this still allows one
corrupt server to deny service to the PIR. However, we can

efficiently deal with this threat, as follows: First, we assume
that all the communication between client and each server is
protected, and in particular authenticated (typically using
a MAC). This allows the client to ignore servers to which
there are repeated communication failures. We therefore
focus on servers corruptions (and assume that all messages
are received correctly as sent).

Second, we assume that the client uses some of the mecha-
nisms above, e.g., signed objects, to detect corrupted objects.
It remains to explain how we deal with this case, i.e., client
receiving corrupted objects due to a server failure. In this
case, the client proceeds with a resolution protocol, which
identifies the corrupted server, as follows.

(A) The client simply re-sends the same query to the
servers; however, this time it indicates that the responses
should be signed. If the client detects that the server failed, by
not returning the same response as before (or not returning
a valid signature), then the client marks this server as ‘bad’
and continues the protocol with the remaining servers. The
signature is over both the request received by the server and
over the response.

(B) Once the client receives the signatures from all the
(operative) servers, then it selects one or more of the servers,
and sends the corresponding signed responses from these
servers to the content origin or a trusted third party. The
origin can validate that the response is valid; if not, it would
blacklist that server so that all clients will stop using it.

If clients wish to preserve query privacy from the origin,
then they should send less than r of the responses from
the servers to the origin (each containing the corresponding
request that the client sent to that server). However, surely,
after few such interferences, a faulty server would certainly
be detected.

6. RELATED WORK
Below we summarize related work for PIR with multiple

servers or a single server, and oblivious RAMs.

Multi-server PIR.
The first work on PIR by Chor et al. [CKGS95] intro-

duced information theoretically secure PIR in a setting with
multiple servers. [Gol07] proposes multi-server PIR schemes
with stronger robustness properties than our protocols, but
these protocols are more complicated and use computation-
ally more demanding cryptographic primitives (Shamir secret
sharing or even homomorphic encryption). An experimental
comparison of the multi-server PIR schemes of [CKGS95] and
[Gol07] was given in [OG11]. [Cap13] implemented Chor et
al.’s PIR scheme [CKGS95] for different block sizes in order
to efficiently and privately retrieve security updates with sim-
ilar performance as downloading the file via FTP. A robust
multi-server PIR scheme that allows multi-block queries was
introduced in [HHG13]. Efficiency of robust multi-server PIR
was improved in [DGH12, DG14]. Multi-server PIR with
verifiability was proposed in [ZSN14].

Single-Server PIR.
Private Information Retrieval with a single computation-

ally bounded server was proposed in [KO97] and is often
referred to as Computationally Private Information Retrieval
(CPIR). Since then, several CPIR schemes have been pro-
posed, e.g., with polylogarithmic communication [CMS99];

a survey of several CPIR schemes is given in [OI07]. In
[CMO00] it was shown that CPIR implies Oblivious Trans-
fer which gives strong evidence that CPIR cannot be con-
structed based on weak computational assumptions such
as one-way functions. [SC07] show that non-trivial CPIR
protocols implemented on standard PC hardware are orders
of magnitude less time-efficient than trivially transferring
the entire database. A lattice-based CPIR scheme was pro-
posed in [MG08] and experiments in [OG11] demonstrate
that this scheme can be more efficient than downloading
the database. By using a trusted hardware token, the com-
putational assumptions for CPIR can be circumvented and
information theoretic security can be achieved, e.g., as shown
in [WDDB06, YDDB08, DYDW10]. In [MBC13b] it was
shown how to exploit the massive parallelism available in
cloud computing to split the server’s workload on multiple
machines using MapReduce. A CPIR scheme with multiple
queries was given in [GKL10]. [DG14] constructs a hybrid
CPIR protocol that combines the multi-server PIR protocol
of Goldberg [Gol07] with the single-server CPIR protocol of
Melchor and Gaborit [MG08], for security even if all servers
are corrupted.

Oblivious RAM.
Oblivious RAM (ORAM) [GO96] is more powerful than

PIR as it allows not only private retrieval of data, but also
private write-access. Burst ORAM [DSS14] allows efficient
online requests through pre-computation. A combination of
ORAM and PIR was presented recently in [MBC13a].

7. CONCLUSION AND FUTURE WORK
We presented RAID-PIR, a family of simple and practical

multi-server PIR schemes, which are efficient in computation,
storage and communication, especially upload from clients.
Due to its simplicity and efficiency, RAID-PIR can be used
by practical systems. We evaluated the efficiency of RAID-
PIR, however, we plan to further extend the evaluation
and report in full version of this work; in particular, use of
larger database as well as of shorter blocks, may be more
realistic, and also would show better the advantage of the
PRG technique of §3.2.3.

RAID-PIR does not provide built-in robustness against
faulty servers, however, we show (in §5.3) how to efficiently
use it to handle erroneous or malicious servers. It would be
an interesting challenge, to find another RAID-PIR mode,
that will provide fault-tolerance, this may also help speed up
results (by not waiting for response from slowest server). Of
course, the challenge is to maintain the RAID-like simplicity
and efficiency.

Acknowledgements.
We thank the anonymous reviewers of ACM CCSW 2014

for their helpful comments on our paper. We also thank the
authors of [Cap13] for making their implementation publicly
available and the authors of [GDL+14] for sharing their code
with us. Thanks also to Ian Goldberg for clarifying the right
algorithm for our evaluation.

This work was supported by the German Federal Ministry
of Education and Research (BMBF) within EC SPRIDE, by
the Hessian LOEWE excellence initiative within CASED, by
the Israeli ministry of science, technology and space, by the
Israeli Cyber-security department of prime minister office, by

the Israel Science Foundation (grant 1354/11), and by the Eu-
ropean Union Seventh Framework Program (FP7/2007-2013)
under grant agreement n. 609611 (PRACTICE). Part of
this work was done while the second author visited Saarland
university.

8. REFERENCES
[BDG14] Nikita Borisov, George Danezis, and Ian

Goldberg. DP5: A private presence service.
Technical Report 2014-10, Centre for Applied
Cryptographic Research (CACR), University of
Waterloo, May, 2014.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin.
Reducing the servers computation in private
information retrieval: PIR with preprocessing.
In Advances in Cryptology – CRYPTO’00,
volume 1880 of LNCS, pages 55–73. Springer,
2000.

[BKOI07] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky,
and William E. Skeith III. Public key
encryption that allows PIR queries. In Advances
in Cryptology – CRYPTO’07, volume 4622 of
LNCS, pages 50–67. Springer, 2007.

[Cap13] Justin Cappos. Avoiding theoretical optimality
to efficiently and privately retrieve security
updates. In Financial Cryptography and Data
Security (FC’13), volume 7859 of LNCS, pages
386–394. Springer, 2013.

[CGN98] Benny Chor, Niv Gilboa, and Moni Naor.
Private information retrieval by keywords.
Cryptology ePrint Archive, Report 1998/003,
1998. http://eprint.iacr.org/1998/003.

[CKGS95] Benny Chor, Eyal Kushilevitz, Oded Goldreich,
and Madhu Sudan. Private information
retrieval. In Foundations of Computer Science
(FOCS’95), pages 41–50. IEEE, 1995.

[CMO00] Giovanni Di Crescenzo, Tal Malkin, and Rafail
Ostrovsky. Single database private information
retrieval implies oblivious transfer. In Advances
in Cryptology – EUROCRYPT’00, volume 1807
of LNCS, pages 122–138. Springer, 2000.

[CMS99] Christian Cachin, Silvio Micali, and Markus
Stadler. Computationally private information
retrieval with polylogarithmic communication.
In Advances in Cryptology – EUROCRYPT’99,
volume 1592 of LNCS, pages 402–414. Springer,
1999.

[DG14] Casey Devet and Ian Goldberg. The best of
both worlds: Combining information-theoretic
and computational PIR for communication
efficiency. In Privacy Enhancing Technologies
Symposium (PETS’14), volume 8555 of LNCS,
pages 63–82. Springer, 2014.

[DGH12] Casey Devet, Ian Goldberg, and Nadia
Heninger. Optimally robust private information
retrieval. In USENIX Security’12, pages
269–283. USENIX, 2012.

[DSS14] Jonathan Dautrich, Emil Stefanov, and Elaine
Shi. Burst ORAM: Minimizing ORAM response
times for bursty access patterns. In USENIX
Security’14. USENIX, 2014.

[DYDW10] Xuhua Ding, Yanjiang Yang, Robert H. Deng,
and Shuhong Wang. A new hardware-assisted
PIR with O(n) shuffle cost. International
Journal of Information Security, 9(4):237–252,
2010.

[GDL+14] Ian Goldberg, Casey Devet, Wouter Lueks, Ann
Yang, Paul Hendry, and Ryan Henry. Percy++
project on SourceForge.
http://percy.sourceforge.net, 2014. Version
1.0.0. Pre-release version supplied by the
authors.

[GHS14] Yossi Gilad, Amir Herzberg, and Michael
Sudkovitch. CDN-on-Demand: Fighting DoS
with Untrusted Clouds. Work in progress, 2014.

[GKL10] Jens Groth, Aggelos Kiayias, and Helger
Lipmaa. Multi-query computationally-private
information retrieval with constant
communication rate. In Public Key
Cryptography (PKC’10), volume 6056 of LNCS,
pages 107–123. Springer, 2010.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software
protection and simulation on oblivious RAMs.
J. of the ACM (JACM), 43(3):431–473, 1996.

[Gol07] Ian Goldberg. Improving the robustness of
private information retrieval. In IEEE
Symposium on Security and Privacy (S&P’07),
pages 131–148. IEEE, 2007.

[HHG13] Ryan Henry, Yizhou Huang, and Ian Goldberg.
One (block) size fits all: PIR and SPIR with
variable-length records via multi-block queries.
In Network and Distributed System Security
(NDSS’13). The Internet Society, 2013.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky.
Replication is not needed: Single database,
computationally-private information retrieval.
In Foundations of Computer Science
(FOCS’97), pages 364–373. IEEE, 1997.

[MBC13a] Travis Mayberry, Erik-Oliver Blass, and
Agnes Hui Chan. Path-PIR: Lower worst-case
bounds by combining ORAM and PIR.
Cryptology ePrint Archive, Report 2013/086,
2013. http://eprint.iacr.org/2013/086.

[MBC13b] Travis Mayberry, Erik-Oliver Blass, and
Agnes Hui Chan. PIRMAP: Efficient private
information retrieval for MapReduce. In
Financial Cryptography and Data Security
(FC’13), volume 7859 of LNCS, pages 371–385.
Springer, 2013.

[MG08] Carlos Aguilar Melchor and Philippe Gaborit.
A fast private information retrieval protocol. In
IEEE International Symposium on Information
Theory (ISIT’08), pages 1848–1852. IEEE, 2008.

[MOT+11] Prateek Mittal, Femi G. Olumofin, Carmela
Troncoso, Nikita Borisov, and Ian Goldberg.
PIR-Tor: Scalable anonymous communication
using private information retrieval. In USENIX
Security’11. USENIX, 2011.

[OG11] Femi G. Olumofin and Ian Goldberg. Revisiting
the computational practicality of private
information retrieval. In Financial Cryptography
and Data Security (FC’11), volume 7035 of
LNCS, pages 158–172. Springer, 2011.

http://eprint.iacr.org/1998/003
http://percy.sourceforge.net
http://eprint.iacr.org/2013/086

[OI07] Rafail Ostrovsky and William E. Skeith III. A
survey of single-database private information
retrieval: Techniques and applications. In
Public Key Cryptography (PKC’07), volume
4450 of LNCS, pages 393–411. Springer, 2007.

[PGK88] David A. Patterson, Garth A. Gibson, and
Randy H. Katz. A case for redundant arrays of
inexpensive disks (RAID). In ACM
International Conference on Management of
Data (SIGMOD’88), pages 109–116. ACM,
1988.

[SC07] Radu Sion and Bogdan Carbunar. On the
practicality of private information retrieval. In
Network and Distributed System Security
(NDSS’07). The Internet Society, 2007.

[SCM05] Len Sassaman, Bram Cohen, and Nick
Mathewson. The pynchon gate: A secure
method of pseudonymous mail retrieval. In
ACM Workshop on Privacy in the Electronic
Society (WPES’05), pages 1–9. ACM, 2005.

[WDDB06] Shuhong Wang, Xuhua Ding, Robert H. Deng,
and Feng Bao. Private information retrieval
using trusted hardware. In European
Symposium on Research in Computer Security
(ESORICS’06), volume 4189 of LNCS, pages
49–64. Springer, 2006.

[YDDB08] Yanjiang Yang, Xuhua Ding, Robert H. Deng,
and Feng Bao. An efficient PIR construction
using trusted hardware. In Information Security
Conference (ISC’08), volume 5222 of LNCS,
pages 64–79. Springer, 2008.

[ZHS07] Fangming Zhao, Yoshiaki Hori, and Kouichi
Sakurai. Two-servers PIR based DNS query
scheme with privacy-preserving. In Intelligent
Pervasive Computing, 2007. (IPC’07), pages
299–302. IEEE, 2007.

[ZSN14] Liang Feng Zhang and Reihaneh Safavi-Naini.
Verifiable multi-server private information
retrieval. In Applied Cryptography and Network
Security (ACNS’14), volume 8479 of LNCS,
pages 62–79. Springer, 2014.

APPENDIX
A. RAID

In the following, we summarize commonly used RAID levels
from which we borrow ideas for our RAID-PIR schemes. The
RAID levels are depicted in Fig. 10.

RAID-0 (Striping): This RAID level stripes blocks over
multiple disks, e.g. in Fig. 10, block 0 is stored on disk 0,
block 1 is stored on disk 1, etc.. This allows to improve read
performance for parallel reads, e.g. in Fig. 10, a read for
block 0 and block 1 can be processed in parallel by disk 0
and disk 1. However, if a disk fails, all blocks stored on it
cannot be recovered.

RAID-1 (Mirroring): This RAID level mirrors blocks
over multiple disks, i.e., each block is stored on multiple disks.
This increases redundancy s.t. when one disk fails, data can
be recovered from the other disk(s). It also improves read
performance as blocks can be read from multiple disks.

RAID-4 (Parity): In this RAID level, one disk stores
parity information about all other disks. Due to its simplicity

XOR is usually used as parity scheme, e.g. in Fig. 10, P01 =
B0 ⊕ B1. In case of a failure of one disk the information can
be recovered from the remaining disks. The performance is
limited by the parity disk.

RAID-5 (Rotating Parity): This RAID level stripes
data blocks across multiple disks and for each stripe of data
blocks a parity block is stored on the disks in a rotating
manner. The parity blocks are computed as the XOR of the
blocks in one stripe. On failure of one of the disks, its data
can be recovered from the data and parity blocks stored on
the other disks.

B0

B1

B2

B3

B4

B5

B6

B7

B8

B0

B0

B0

B1

B1

B1

B2

B2

B2

B0

B1

P01

B2

B3

P23

B4

B5

P45

B0

B1

P01

B2

P23

B3

P45

B4

B5

Disk 1

Disk 2

Disk 3

Disk 1

Disk 2

Disk 3

RAID-0 RAID-1

RAID-4 RAID-5

Figure 10: Distribution of blocks in RAID levels 0,
1, 4, and 5 with three disks. Bi denotes a data block,
Pij denotes a parity block.

B. THE CKGS SCHEME [CKGS95]
This is a description of the original linear summation

PIR scheme by Chor et al. [CKGS95] that our ideas are
based on. The client C is interested in privately querying
blockc. The request qi that C sends to server Si is a randomly
chosen string of B bits for i ∈ {1, . . . , k−1}. The k-th request
qk corresponds to the XOR of all other requests except for
one bit flipped at the index of blockc. The result of the XOR
of all requests is the elementary vector ec with length B bits
that has a 1 in position c and 0 everywhere else. The servers’
responses have a length b bits each and are the XOR of all
blocks that the user requested in his query, i.e. if the bit at
index j was set in the client’s query, the server XORs the
blockj into his response. When the client has received a reply
from all servers he calculates the XOR of all k responses and
gets blocki, as all other blocks are contained an even number
of times and cancel out due to the XOR. An example of this
scheme is depicted in Fig. 11.

rnd1

rnd2

rnd3

flip4

00100 00000 00000 00000

q1

q2

q3

q4
⊕

e3 =

k
=

4
q
u
er

ie
s

Figure 11: CKGS with k = 4 servers and B = 20
blocks.

	Introduction
	Preliminaries
	Private Information Retrieval
	Notations

	Protocol Overview
	Setup
	Privately Requesting Files
	A Variant of CKGS [CKGS95]
	Using more than r servers
	SB: Single Block Queries with Seed Expansion
	MB: Multiple Block Queries

	Analysis
	Complexity and Efficiency
	Correctness
	Security

	Further Improvements

	Implementation & Benchmarks
	System Description
	Benchmark Results
	Comparison with [Gol07]

	Applying RAID-PIR
	Private Multi-Block Object Retrieval
	PIR Lookup Mechanisms
	Object Integrity, Availability and Accountability

	Related Work
	Conclusion and Future Work
	References
	RAID
	The CKGS Scheme [CKGS95]

