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ABSTRACT
At WAHC’13, Bringer et al. introduced a protocol called
SHADE for secure and e�cient Hamming distance com-
putation using oblivious transfer only. In this paper, we
introduce a generalization of the SHADE protocol, called
GSHADE, that enables privacy-preserving computation of
several distance metrics, including (normalized) Hamming
distance, Euclidean distance, Mahalanobis distance, and sca-
lar product. GSHADE can be used to e�ciently compute
one-to-many biometric identification for several traits (iris,
face, fingerprint) and benefits from recent optimizations of
oblivious transfer extensions. GSHADE allows identification
against a database of 1 000 Eigenfaces in 1.28 seconds and
against a database of 10 000 IrisCodes in 17.2 seconds which
is more than 10 times faster than previous works.

General Terms
Algorithms, Security

Keywords
Signal Processing in the Encrypted Domain; Privacy, Bio-
metrics; Oblivious Transfer

1. INTRODUCTION
Secure Two-Party Computation (S2PC), introduced in

the eighties by Yao [45] and Goldreich-Micali-Wigderson
(GMW) [21] enables two parties to interactively compute
a function on their private inputs without revealing any in-
formation other than what can be inferred from the function
output. A natural field of application for S2PC is privacy-
preserving biometric identification, e.g., [3,5,9,10,18,28,35,
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38, 41–43]. In this setting, a client C, who holds a fresh
biometric sample of a person, and a server S, who holds
a database of biometric data, want to determine whether
there is a biometric reference for C in the database of S. C
wants to prevent S from learning the query sample, since it
would allow S to track the person from which the sample
was taken. S, on the other hand, wants to prevent C from
learning information about the contents of his database. We
describe more detailed examples later in §1.3.

Privacy-preserving biometric identification has been re-
searched very extensively in the last years. While the first
protocols were based on (additively) homomorphic encryp-
tion schemes only (e.g., [18, 38]), it was soon demonstrated
that protocols which use generic secure computation tech-
niques such as Yao’s garbled circuits protocol [45] achieve a
better performance and allow the extension to a richer set
of functionalities. These protocols either combine homomor-
phic encryption with generic secure computation protocols,
e.g., [3, 5, 25, 28, 41], or exclusively use generic secure com-
putation protocols, e.g., [10, 27,35].

A recent development in the area of secure computation
is the design of e�cient protocols that are based on oblivi-
ous transfer (OT) [40]. Although e�cient constructions for
OT have been known for several years, in particular OT ex-
tension [30] which allows to base OT on symmetric crypto-
graphic primitives, OT was regarded as an expensive primi-
tive. However, e�cient implementations of OT, e.g., [12,27],
have shown that OT can be performed at very low cost and
have renewed the interest in protocols using OT. An ex-
ample can be seen in the field of private set-intersection,
where an OT-based solution was presented recently [17] that
outperforms prior approaches based on homomorphic en-
cryption [14] and generic secure computation [26]. Another
example, from the field of biometric identification, is the
SHADE (for Secure HAmming DistancE computation) pro-
tocol [9], which allows secure computation of the Hamming
distance using OT only. In parallel to these applications of
OT, even more e�cient OT protocols have been developed
recently that further improve the computation and commu-
nication complexity of OT extension [1, 32].
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1.1 Our Contributions
In this paper, we build on recent developments in the

area of e�cient OT and develop a generic framework for
secure biometric identification, called GSHADE (General-
ized SHADE). GSHADE allows the e�cient computation of
various distance measures such as the (normalized) Ham-
ming distance, the Euclidean distance, the scalar product,
and the Mahalanobis distance using OT only. Furthermore,
GSHADE can be combined with generic secure computa-
tion techniques and hence can be used to e�ciently com-
pute a rich set of functionalities that are based on distance
measures. We evaluate the e�ciency of GSHADE both
theoretically and experimentally and compare it to related
work.1 Overall, GSHADE allows a factor of 10 to 20 im-
provement in runtime compared to the best previous solu-
tions. A brief summary of the runtimes and communica-
tion complexities of GSHADE for di↵erent biometric iden-
tification schemes (described in §4), in combination with
the generic secure computation protocol of Golreich-Micali-
Wigderson (GMW),2 is depicted in Tab. 1.

1.2 Setting
In our setting, a server S and a client C want to securely

compute 1-vs-N biometric identification. The actual inputs
and possible outputs are given in Fig. 1. The privacy re-
quirements of S2PC imply that one party does not get more
information about the other party’s inputs than what can be
deduced from its own inputs and outputs. This is formally
expressed using a simulation game, see [24] for more details.
In this work, we focus on semi-honest (also called passive
or honest but curious) adversaries. In this model, privacy
of the inputs is ensured against parties that do not cheat
but try to infer additional information from the observed
messages. In particular, this model guarantees that even an
insider that is able to access the communication records of
the secure computation is unable to obtain additional infor-
mation about the inputs. The semi-honest model is su�cient
for many applications [6, 7] and allows to construct highly
e�cient protocols.

1.3 Example Use Cases
We emphasize the importance of our GSHADE protocol

for biometric identification by giving a non-exhaustive list
of use cases to which our solution can be applied.

Anonymous Biometric Access Control. Our first use
case deals with biometric access control to, for instance, a
company building. The employer S wants to ensure that
only the registered (and biometrically enrolled) employees
are allowed to enter the building. We can use privacy-
preserving biometric identification based on our solution to
prevent the employer from tracking his employees’ activities.

Biometric Anonymous Credentials. In this example,
we have three parties: a client C, a service provider P, and
a biometric data server holder S. S can be, for instance, a
government that holds a database of all people satisfying a
given criterion (e.g., be over 21). To access the services of P,
C identifies against the database of S. If C was successfully
identified, S gives him a token to present to P to prove that

1Our GSHADE implementation is available online at http:
//encrypto.de/code/GSHADE.
2Alternatively, Yao’s garbled circuits protocol could be used.

Inputs:

• Client C inputs a biometric acquisition X

• Server S inputs N biometric data items
Y 1, . . . , Y N

Possible Outputs (given to S and/or C):

• A yes/no answer (Is X close enough to one of the
Y is?)

• The index and/or distance of the closest match

• The Y is that are su�ciently close to X

• An identification score

• All distances between X and the Y is

• . . .

Figure 1: Secure Two-party Computation of Bio-
metric Identification.

he fulfills the requirements. In the whole process, C reveals
his identity neither to P nor to S.

Secure Biometric Database Intersection. In our
third example, we consider two law enforcement agencies
that want to identify the suspects they have in common
or that want to determine whether a suspect is registered
in a given database. For privacy and security reasons, the
involved parties want to keep the data that is not in the
intersection secret. Our solution can be adapted to this use
case by letting the client input a list of biometric data.

1.4 Outline
The remainder of this paper is organized as follows. We

describe preliminaries for this work in §2, including main
techniques for S2PC, the state of the art in privacy-preser-
ving biometric identification, and the original SHADE pro-
tocol. We introduce GSHADE, our generalization of the
SHADE protocol for computing several distance metrics, in
§3 and describe its applications to biometric identification in
§4. We give implementation results and compare the perfor-
mance of GSHADE to the state of the art in §5 and conclude
in §6.

2. PRELIMINARIES
In this section, we summarize the properties of and tech-

niques used for secure two-party computation (§2.1), dis-
tance metrics for biometric identification (§2.2), the state of
the art in privacy-preserving biometric identification (§2.3),
and the original SHADE protocol (§2.4). More details on
S2PC can for instance be found in [24], while a deeper study
of its application to biometric identification can be found in
[8].

2.1 Secure Two-Party Computation (S2PC)
Several techniques can be applied to realize Secure Two-

Party Computation (S2PC), most prominently Yao’s gar-
bled circuits protocol [45] and the protocol of Goldreich-
Micali-Wigderson (GMW) [21] that both use oblivious trans-
fer [19, 40]; or alternatively (additively) homomorphic en-
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Application SCiFI Faces [38] IrisCodes [16] FingerCodes [31] Eigenfaces [44]

Distance Computation using GSHADE

Metric Hamming Distance
Normalized

Euclidean Distance
Scalar Product

Hamming Distance + Euclidean Distance
Time in sec. (LAN/WiFi) 0.9 / 1.4 8.8 / 14.3 5.1 / 10.3 1.0 / 2.8
Communication in MB 4.3 51.3 48.9 15.1

Post-Processing using GMW
Method Comparison Comparison Closest Match Closest Match
Time in sec. (LAN/WiFi) 0.09 / 0.27 0.3 / 1.4 1.6 / 4.1 4.0 / 13.1
Communication in MB 1.9 5.1 18.6 68.5

Table 1: Empirical performance of GSHADE for 1-vs-5 000 biometric identification schemes. Details on the
choice of parameters are given in Tab. 2.

cryption, e.g., [13]. In the following, we give a short sum-
mary of each of these techniques.

Oblivious Transfer. A 1-out-of-2 oblivious transfer
(OT) [19,40], denoted by OT`, is a two-party protocol where
one party (the sender) inputs two `-bit strings x

0

, x
1

2
{0, 1}` and the other party (the receiver) inputs a bit b. At
the end of the protocol, the receiver obtains xb but learns
no information about x

1�b whereas the sender learns no in-
formation about b. OT protocols can be built from public
key cryptography, e.g., [36]. For a large number of OTs,
OT extension [30] can be used that extends a few base OTs
to many OTs using only e�cient symmetric cryptographic
primitives. Recent work of [32] further improved the commu-
nication complexity of OT extension and [1] provides even
more e�cient protocols for the correlated OT functionality,
where the sender inputs only a single value � together with
a correlation function f s.t. at the end of the protocol, the
sender obtains x

0

2R {0, 1}` and x
1

= f
�

(x
0

) as output and
the receiver obtains xb.

Yao’s Garbled Circuits Protocol. A garbled circuit
[45] is an encrypted version of the binary circuit representing
the function to be evaluated securely. In Yao’s protocol, one
party (the sender) generates the garbled circuit by building
the binary circuit, choosing a pair of encryption keys for ev-
ery wire of the circuit, and encrypting the output wire keys
using the keys of the input wires. The sender then sends the
garbled circuit and the input keys that correspond to his
inputs to the second party (the receiver). The receiver ob-
tains the keys corresponding to his inputs by engaging in an
oblivious transfer with the sender. Using the obtained input
keys, the receiver can then decrypt the garbled circuit to ob-
tain the result while learning no intermediary information.
See [27] for a more detailed description.

Yao’s protocol relies mostly on symmetric cryptography
and is best suited for functions that can e�ciently be rep-
resented as binary circuits and in environments that have a
high communication latency. However, Yao’s protocol has
a high communication complexity and requires the func-
tion and input sizes to be known in advance to allow pre-
computation. Yao’s garbled circuits protocol has been im-
plemented in the FastGC framework [27].

GMW Protocol. Similar to Yao’s protocol, the GMW
protocol [21] also uses a binary circuit representation of the
function, but performs the secure evaluation on shares rather
than using encrypted gates. The parties first secret-share
their inputs using a XOR secret sharing scheme. To evaluate
an XOR gate, the parties simply XOR the shares of the input
wires. To evaluate an AND gate, the parties perform an

oblivious transfer, where one party pre-computes all possible
outputs of the gate and the other party obliviously obtains
the output that corresponds to its input shares. To obtain
the output of the circuit, the parties exchange the shares of
the output wires.

As shown in [1,12,42], the GMW protocol allows the pre-
computation of all symmetric cryptographic operations be-
fore the function or the inputs to the function are known
and requires less communication per AND gate than Yao’s
garbled circuits protocol. However, the GMW protocol re-
quires a number of communication rounds that is linear in
the depth of the circuit. The GMW protocol has been im-
plemented in [12] and further optimized for the two-party
case in [1, 42].

Homomorphic Encryption. A public-key encryption
is homomorphic if it is possible to compute over encrypted
data without the knowledge of the secret key. Although fully
homomorphic encryption (i.e., a cryptosystem that is homo-
morphic for any operation) has been introduced in 2009 [20],
it is not yet practical. Most implemented proposals there-
fore use additively homomorphic encryption schemes, such
as Paillier [39] or Damg̊ard-Geisler-Krøigaard (DGK) [15].

Homomorphic encryption is more suited for arithmetic
circuits and the ciphertexts can be re-used for several in-
stances of secure computation, which reduces the commu-
nication complexity. However, homomorphic encryption re-
quires computationally expensive public-key operations that
scale very ine�ciently for larger security parameters.

2.2 Distance Metrics
In the following, we summarize some distance metrics that

are used in biometric identification schemes. In §2.3 we will
describe which distance is used by which biometric identi-
fication scheme and in §3 we will show that each of these
distances can be computed e�ciently with our generalized
SHADE protocol.

Hamming Distance (HD). The Hamming distance be-
tween two `-bit vectors X = (x

1

, . . . , x`) and Y = (y
1

, . . . ,

y`) is computed as HD(X,Y ) =
P`

i=1

xi � yi.
Normalized Hamming Distance (NHD). The nor-

malized Hamming distance between a `-bit vector X = (x
1

,
. . . , x`) with `-bit mask M = (m

1

, . . . ,m`) and a vector
Y = (y

1

, . . . , y`) with mask M 0 = (m0
1

, . . . ,m0
`) is computed

as NHD(X,M ;Y,M 0) =
P`

i=1(mim
0
i(xi�yi))P`

i=1(mim
0
i)

.

Scalar Product (SP). The scalar product between two
K-dimensional vectors X = (X

1

, . . . , XK) and Y = (Y
1

, . . . ,

YK) is computed as SP(X,Y ) =
PK

i=1

XiYi.
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Squared Euclidean Distance (ED). The squared Eu-
clidean distance between two K-dimensional vectors X =
(X

1

, . . . , XK) and Y = (Y
1

, . . . , YK) is computed as
ED(X,Y ) =

PK
i=1

(Xi�Yi)
2 =

PK
i=1

((Xi)
2�2XiYi+(Yi)

2).
Squared Mahalanobis Distance (MD). The squared

Mahalanobis distance between two K-dimensional vectors
X = (X

1

, . . . , XK) and Y = (Y
1

, . . . , YK) is computed as
MD(X,Y ) = (X � Y )TM(X � Y ), where M is a positive
semi-definite matrix (which might be the inverse of the co-
variant matrix of a sample set). The Mahalanobis distance
can be used for instance for hand shape, keystroke, or sig-
nature recognition [34].

2.3 Privacy-Preserving Biometric Identifica-
tion

Several di↵erent schemes for privacy-preserving biomet-
ric identification using S2PC have been proposed. Most
schemes focused on face [18, 38, 41], fingerprint [3, 5, 28, 43],
or iris [5, 10, 35] recognition which we summarize next. We
provide more details on the underlying algorithms in §4.

Privacy-preserving face recognition. Privacy-preser-
ving face recognition has been realized based on two di↵erent
recognition algorithms: Eigenfaces used in [18,41,42] and the
SCiFI algorithm used in [9, 27,38,42].

In protocols based on the Eigenfaces algorithm [44], the
parties have to perform a projection (matrix-vector or scalar
products), compute the Euclidean distance, and compare
the resulting distance to a threshold. Erkin et al. [18] sug-
gest to employ additively homomorphic encryption for the
whole protocol. Sadeghi et al. [41] showed that a hybrid solu-
tion gives better performances, using additively homomor-
phic encryption for projection and distance computation,
then garbled circuits for comparisons. Schneider et al. [42]
use GMW, which allows to pre-compute all cryptographic
operations and thereby achieves a fast online phase.

The SCiFI algorithm [38] is a face recognition algorithm
that is based on the Hamming distance and was specifically
designed to yield an e�cient privacy-preserving protocol.
Originally, Osadchy et al. [38] used additively homomorphic
encryption and subsequently Huang et al. [27] and Schneider
et al. [42] showed that using Yao’s garbled circuits respec-
tively GMW results in better performances. The SHADE
protocol of Bringer et al. [9] is an even more e�cient con-
struction based on oblivious transfer (cf. §2.4 for details).

Privacy-preserving fingerprint recognition. Secure
fingerprint recognition has been considered using two main
solutions. The FingerCodes technique [31] relies on Eu-
clidean distance and has been proposed in [3,5,28], which use
additively homomorphic encryption for Euclidean distance
and several solutions for comparison/identification opera-
tions. Use of minutiae-based fingerprint recognition [34] has
been envisioned in [5,43], but we do not further discuss it in
this paper as it does not fit our protocol.

Privacy-preserving iris recognition. Iris recognition
using IrisCodes [16] requires secure evaluation of normalized
Hamming distances and has first been considered by Blanton
et al. [5] using homomorphic encryption, then by Luo et al.
[35] and Bringer et al. [10] using Yao’s garbled circuits.

2.4 Secure Hamming Distance Computation
(SHADE)

The SHADE protocol [9] allows e�cient secure Hamming
distance computation using oblivious transfer. In the fol-

lowing we describe the original SHADE protocol and its ex-
tension to the 1-vs-N case.

The SHADE Protocol. The SHADE protocol was first
intended for secure computation of Hamming distances. For
S and C with `-bit inputs Y and X the protocol works as
follows. S and C perform ` OTdlog2(`+1)e where, in the i-
th OT, S chooses a random ri 2R Z`+1

and inputs (ri +
yi, ri + (yi � 1)) and C inputs yi as choice bit and receives
ti = ri + (xi � yi). S then sums up the random masks and
outputs R =

P`
i=1

ri and C sums up the received values

and outputs T =
P`

i=1

ti. Note that we have T � R =P`
i=1

(ri +(xi � yi))�P`
i=1

ri =
P`

i=1

xi � yi = HD(X,Y ).
SHADE for the 1-vs-N Case. SHADE was observed to

be e�ciently extendable to the 1-vs-N case, where S holdsN
`-bit values Y 1, . . . , Y N and C holds a single `-bit value X.
The only additional overhead for the extended protocol is
longer bit strings in the oblivious transfers. More detailed,
in the i-th OT, the parties perform ` OTNdlog2(`+1)e where
S inputs (r1i +x1

i || . . . ||rNi +xN
i , r1i + x̄1

i || . . . ||rNi + x̄N
i ) and C

inputs yi and receives ti = (r1i+(x1

i�yi)|| . . . ||rNi +(xN
i �yi)).

In the final step, the parties can again simply compute and
output R1, . . . , RN and T 1, . . . , TN , where Rb =

P`
i=1

rbi
and T b =

P`
i=1

tbi , for 1  b  N .

3. OUR GENERALIZED SHADE (GSHA-
DE) PROTOCOL

In this section we describe our generalized SHADE pro-
tocol, called GSHADE, which allows to compute di↵erent
distances (§3.1). We describe how to combine GSHADE
with comparison or minimum protocols (§3.2), outline how
to e�ciently extend it to 1-vs-N matching (§3.3) and how
to base it on the more e�cient correlated OT functional-
ity (§3.4). We give applications of GSHADE to biometric
identification with new adaptations for IrisCodes and Eigen-
faces later in §4.
3.1 The GSHADE Protocol

We observe that the original SHADE protocol extends to
the family FGSHADE of functions that can be expressed
as f(X,Y ) = fX(X) + ⌃n

i=1

fi(xi, Y ) + fY (Y ), where X =
(x

1

, . . . , xn) 2 {0, 1}n is the input of C and Y is the input
of S. (The set S to which Y belongs does not impact the
protocol.) In particular, several metrics used for biometric
matching are included in this family of functions:

Hamming Distance X = (x
1

, . . . , x`) and Y = (y
1

, . . . ,
y`) are n = `-bit vectors. We have fX = fY = 0 and
fi(xi, Y ) = xi � yi, for i = 1, . . . , n.

Scalar Product X = (X
1

, . . . , XK) withXi = (xK(i�1)+1

,
. . . , xK(i�1)+`) and Y = (Y

1

, . . . , YK) with Yi =
(yK(i�1)+1

, . . . , yK(i�1)+`) are n = K ⇥ `-bit-integer
vectors. We have fX = fY = 0 and
fK·(i�1)+j(xK(i�1)+j , Y ) = 2j�1 · xK(i�1)+j · Yi, for
i = 1, . . . ,K and j = 1, . . . , `.

Squared Euclidean Distance X = (X
1

, . . . , XK) with
Xi = (xK(i�1)+1

, . . . , xK(i�1)+`) and Y = (Y
1

, . . . , YK)
with Yi = (yK(i�1)+1

, . . . , yK(i�1)+`) are n = K ⇥ `-
bit-integer vectors. We have fX(X) = ⌃K

i=1

(Xi)
2,

fY (Y ) = ⌃K
i=1

(Yi)
2 and fK·(i�1)+j(xK(i�1)+j , Y ) =

�2j · xK(i�1)+j · Yi, for i = 1, . . . ,K and j = 1, . . . , `.
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Squared Mahalanobis Distance We assume that
M = (Muv)u,v=1,...,K is known by both parties, and
not a private input of either party.3 X = (X

1

, . . . , XK)
with Xi = (xK(i�1)+1

, . . . , xK(i�1)+`) and Y =
(Y

1

, . . . , YK) with Yi = (yK(i�1)+1

, . . . , yK(i�1)+`) are
n = K ⇥ `-bit-integer vectors. We have fX(X) =
XTMX, fY (Y ) = Y TMY , fK·(i�1)+j(xK(i�1)+j , Y )

= �2j · xK(i�1)+j ·
PK

v=1

Mi,vYv, for i = 1, . . . ,K, j =
1, . . . , `.

In Fig. 2, we describe the generalized SHADE protocol.
Note that m is such that the output of f(X,Y ) belongs
to Zm. For instance, if f is the Hamming distance between
two `-bit vectors, we set m = `+ 1.

Inputs:

• C inputs a n-bit string X = (x
1

, . . . , xn)

• S inputs Y 2 S

Outputs:

• S obtains R 2R Zm

• C obtains T = R+ f(X,Y )

Protocol:

1. S chooses n random values r
1

, . . . , rn 2R Zm.

2. For each i = 1, . . . , n, S and C engage in a
OTdlog2(m)e where

• S acts as the sender and C as the receiver.

• C’s selection bit is xi.

• S’s input is (ri + fi(0, Y ), ri + fi(1, Y )).

• The output obtained by C is consequently ti =
ri + fi(xi, Y ).

3. C computes and outputs T = ⌃n
i=1

ti + fX(X).

4. S computes and outputs R = ⌃n
i=1

ri � fY (Y ).

Figure 2: Generalized SHADE (GSHADE) protocol.

Correctness. Since r
1

, . . . , rn are picked uniformly at
random over Zm, then, for fixed X and Y , R =

Pn
i=1

ri �
fY (Y ) is distributed uniformly over Zm and the output of
S is correct. Moreover, we have T � R =

Pn
i=1

(ti � ri) +
fX(X) + fY (Y ) =

Pn
i=1

fi(xi, Y ) + fX(X) + fY (Y )
= f(X,Y ). Thus, T = R + f(X,Y ) and the output of C
is correct.

Security. The proof of security of GSHADE is similar to
that of SHADE [9]. We give a proof sketch against static
semi-honest adversaries next. Security is proven by simula-
tion in the OT-hybrid setting, where OTs are simulated by

3This assumption is reasonable, for instance, if MD is used
instead of ED in the Eigenfaces protocol (see §4.4). In-
deed, the matrix M would only disclose statistical informa-
tion about the projection space, which is not very sensitive,
whereas the Eigenfaces basis gives information about real
biometric data (they can reveal “average” faces) and should
be kept private, as it is the case in our protocol.

a trusted oracle. We recall that each simulator is provided
with the input and output of the corrupted party.
Case 1 – S is corrupted. Since S receives no messages be-
yond those in OT, its view can be perfectly simulated.
Case 2 – C is corrupted. Given C’s output T and inputX, C’s
view can be perfectly simulated by sending random values
t0
1

, . . . , t0n�1

2R Zm and t0n = T �Pn�1

i=1

t0i � fX(X) to C in
the OTs.

3.2 Adding Comparison or Minimum
In some use-cases of privacy-preserving biometric identi-

fication, it is required that the parties learn whether the
distance is lower than a certain threshold (comparison) or
the index of the closest match (minimum). For these proto-
cols, we require a secure comparison or minimum operation
after the distance calculation, which keeps the resulting dis-
tance secret. Using GSHADE does not improve comparison
or minimum operations. However, if one runs GSHADE,
the masked results can easily be used as input to a secure
comparison or minimum protocol. Several protocols are pos-
sible, depending on the actual desired output. We refer the
reader to the papers mentioned in §2.3 for an overview. Note
that for Yao’s garbled circuits protocol and the GMW pro-
tocol, we have to build a circuit which first reconstructs
f(X,Y ) = T � R and subsequently computes the desired
functionality. In our experiments in §4 we use the GMW
protocol for the comparison or minimum operations.

3.3 Adaptation to the 1-vs-N case
Analogue to the original SHADE protocol, the GSHADE

protocol can be e�ciently extended to the 1-vs-N biometric
identification, where the client has one input X and the
server has N inputs Y 1, . . . , Y N and they want to compute
all the distances f(X,Y b), for b = 1, . . . , N . The protocol is
modified in the following way

1. S generates n · N random values rb,i 2R Zm, for b =
1, . . . , N .

2. For each i = 1, . . . , n, S and C engage in a OTNdlog2(m)e

where

• S acts as the sender and C as the receiver.

• C’s selection bit is xi.

• S’s input is (r
1,i+fi(0, Y

1)|| . . . ||rN,i+fi(0, Y
N ),

r
1,i + fi(1, Y

1)|| . . . ||rN,i + fi(1, Y
N )).

• The output obtained by C is (t
1,i|| . . . ||tN,i) =

(r
1,i + fi(xi, Y

1)|| . . . ||rN,i + fi(xi, Y
N )).

3. C computes and outputs T 1 = ⌃`
i=1

t
1,i + fX(X), . . . ,

TN = ⌃`
i=1

tN,i + fX(X)

4. S computes and outputs R1 = ⌃n
i=1

r
1,i � fY (Y 1), . . . ,

RN = ⌃n
i=1

rN,i � fY (Y N )

Note that the number n of OTs remains unchanged com-
pared to the 1-vs-1 case and only the length of the inputs
grows linearly with the number of database entries N . As
the protocol is essentially a parallel execution of the basic
GSHADE protocol, but using OTs with longer strings, cor-
rectness and security carry over from GSHADE (cf. §3.1).
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3.4 Using Correlated OTs
As described in §2.1, the correlated OT (C-OT) extension

protocol of [1] has an even lower communication complex-
ity than generic OT extension. Here, the sender obtains
one randomly chosen value as output and inputs a corre-
lation that determines the second value. This functional-
ity was initially used for Yao’s protocol with the free-XOR
technique [33] where for each wire w one key k0

w is chosen
randomly and the other key is correlated with k1

w = k0

w��,
where � is a fixed o↵set. In the following we show how
GSHADE can be based on C-OT instead of OT. Here we
assume that m is a power of 2 (we discuss the case where m
is not a power of 2 in Appendix A). The GSHADE protocol
can be rewritten as follows:

1. For each i = 1, . . . , n, S and C engage in a
C-OTdlog2(m)e where

• C acts as the receiver with selection bit xi.

• S acts as the sender with input �i = fi(1, Y ) �
fi(0, Y ).

• The correlation function is f
�i(·) = ·+�i.

• The output obtained by S is ⇢i 2R Zm.

• The output obtained by C is ⌧i = ⇢i � fi(0, Y ) +
fi(xi, Y ).

2. C computes and outputs T =
Pn

i=1

⌧i + fX(X).

3. S computes and outputs R =
Pn

i=1

(⇢i � fi(0, Y )) �
fY (Y ).

Correctness. During the ith C-OT, C obtains ⇢i =
⇢i�fi(0, Y )+fi(0, Y ) if xi = 0, or ⇢i+�i = ⇢i+fi(1, Y )�
fi(0, Y ) if xi = 1. Thus, C always obtains ⌧i = ⇢i +
fi(xi, Y ) � fi(0, Y ). Regarding final outputs, T � R =Pn

i=1

(⌧i � ⇢i + fi(0, Y )) + fX(X) + fY (Y ) =
Pn

i=1

(⇢i +
fi(xi, Y ) � fi(0, Y ) � ⇢i + fi(0, Y )) + fX(X) + fY (Y ) =Pn

i=1

fi(xi, Y )+fX(X)+fY (Y ) = f(X,Y ). Thus, R 2R Zm

and T = R+ f(X,Y ) and the protocol is correct.
Security. Security is proven in a similar way as for the

OT-based GSHADE protocol described in §3.1. We still give
a proof sketch against static semi-honest adversaries. Here,
we assume that C-OTs are simulated by a trusted oracle.
Case 1 – S is corrupted. Given S’s output R and input
Y , S’s view can be perfectly simulated by sending ran-
dom values ⇢0

1

, . . . , ⇢0n�1

2R Zm and ⇢0n = R � Pn�1

i=1

⇢0i +Pn
i=1

fi(0, Y ) + fY (Y ) to C in the C-OTs.
Case 2 – C is corrupted. Given C’s output T and inputX, C’s
view can be perfectly simulated by sending random values
⌧ 0
1

, . . . , ⌧ 0n�1

2R Zm and ⌧ 0n = T �Pn�1

i=1

⌧ 0i � fX(X) to C in
the C-OTs.

This adaptation is also compatible with the 1-vs-N version
of GSHADE described in §3.3. Using the C-OT extension
protocol of [1] allows to reduce the asymptotic communica-
tion complexity by a factor of two compared to using the
original OT extension of [30], cf. [1].

4. APPLICATIONS
We demonstrate several applications where the GSHADE

protocol can be used for secure and e�cient distance com-
putations: the SCiFI (§4.1) and Eigenfaces (§4.4) protocol
for face recognition, the IrisCodes (§4.2) protocol, and the
FingerCodes (§4.3) protocol. In Tab. 2 we summarize the

parameters for the distances used, the number of OTs n, and
the length of the OTs’ outputs. Note that the parameters
in Tab. 2 include optimizations proposed in previous works.

4.1 SCiFI
In the setting of face recognition using SCiFI [38], biomet-

ric vectors are ` = 900-bit binary vectors that are compared
using Hamming distance. One can simply apply the orig-
inal SHADE protocol of [9] which is a special case of our
GSHADE protocol. The authors of [38] point out that the
Hamming distances in the SCiFI protocol never exceeded
180. Thus, we decrease the range of Hamming distances
from Z

901

to Z
181

. Therefore, in case of SCiFI, we have to
perform n = ` = 900 OTs on dlog

2

181eN = 8N -bit strings.

4.2 IrisCodes
IrisCodes [16] are 512-byte representations of iris images

made of a template and a mask of ` = 2048-bit each. The
mask signifies reliable bits of the iris template, i.e., a mask
bit set to 1 indicates that the corresponding template bit is
reliable, while a mask bit set to 0 indicates an erasure (due
to eyelids, eyelashes, blurs,. . . ). IrisCodes can be compared
using normalized Hamming distance (NHD).

One can see that normalized Hamming distance does not
exactly match the family FGSHADE . However, if we adopt
the convention that a template bit which is associated to a 0
in the mask is also set to 0, which is not restrictive, numer-
ator (num) and denominator (den) of normalized Hamming
distance both match the family. We integrate both template
and mask to the input vector. Let n = 2`, fnum(X,Y ) =P`

i=1

x`+i · y`+i · (xi � yi) and fden(X,Y ) =
P`

i=1

x`+i ·
y`+i. For i = 1, . . . , `, let fden

i (xi, Y ) = 0, fden
i+` (xi+`, Y ) =

xi+` · yi+` and let fnum
i and fnum

i+` be defined as in Tab. 3.
Our convention enforces that (xi+` = 0 =) xi = 0)
(and same for Y ), for each i = 1, . . . , `. If both inputs
X and Y respect this convention, then one can easily check
that fnum(X,Y ) =

Pn
i=1

fnum
i (xi, Y ) and fden(X,Y ) =Pn

i=1

fden
i (xi, Y ).

yi 0 1
yi+` 0 1 0 1

fnum
i (0, Y ) 0 0 – 1
fnum
i (1, Y ) 0 1 – 0
fnum
i+` (0, Y ) 0 0 – �1
fnum
i+` (1, Y ) 0 0 – 0

Table 3: Definition of fnum
i and fnum

i+` , for i 2 [1, `].

Outputting the numerator and the denominator does not
satisfy complete privacy requirements, if one wants to se-
curely evaluate the normalized Hamming distance. Never-
theless, our goal is to apply GSHADE to biometric iden-
tification. Thus, instead of outputting NHD, we output

the result of NHD(X,Y )
?

< t, which can be rewritten as

fnum(X,Y )
?

< t ·fden(X,Y ), where 0 < t < 1 is a threshold.
Thus, one runs GSHADE on both fnum and fden. C obtains
Tnum = fnum(X,Y )+Rnum and T den = fden(X,Y )+Rden

while S holds masks Rnum and Rden (see Fig. 2). If t is
known by C, then C includes Tnum and t ·T den and S inputs
Rnum and t ·Rden to a protocol that first pairwise subtracts
inputs and then compares the results. If t is not known by C,
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Protocol Operation n dlog
2

(m)e
SCiFI [38] Hamming Distance 900 8

IrisCodes [5] Normalized Hamming Distance 2 048 + 2 048 31 + 11
FingerCodes [28] Euclidean Distance 640⇥ 8 = 5 120 16

Eigenfaces (projection) [18,25,41,42] Scalar Product 10 304⇥ 8 = 82 432 12⇥ 30 = 360
Eigenfaces (distance) [18,25,41,42] Euclidean Distance 12⇥ 30 = 360 50

Table 2: Parameters used in our experiments (n: number of OTs, Zm: range of OT inputs).

this secure protocol should first include a secure multiplica-
tion step or GSHADE should be run on t · fden.

When actually running this protocol, we suggest to run
n OTs for both fnum and fden, where the first ` OTs only
concern fnum while the last `OTs concatenate contributions
to both fnum and fden. Thus, complexity (before compar-
ison) is ` ⇥ OTdlog2(`)e + ` ⇥ OT2dlog2(`)e in the 1-vs-1 case
or `⇥OTNdlog2(`)e + `⇥OT2Ndlog2(`)e in the 1-vs-N case.

4.3 FingerCodes
Fingerprint recognition via FingerCodes [31] uses a global

representation (unlike the more standard minutiae-based re-
cognition protocols that describe local features) of biometric
data as integer vectors. Comparison between two biometric
data samples is then simply done using Euclidean distance.
As mentioned in §3.1, one can directly apply GSHADE to
securely evaluate this metric. In general, without exper-
imental optimizations, one has to perform n = K` OTs
on N(2` + dlog

2

(K)e)-bit inputs. Two di↵erent sets of pa-
rameters for FingerCodes were suggested: [3, 5] use K =
16-dimensional vectors of ` = 7-bit elements and perform
the comparison on 19-bit results while [28] uses K = 640-
dimensional vectors of ` = 8-bit elements and performs the
comparison on 16-bit results. Consequently, for the param-
eters of [3, 5] we have to perform n = K` = 112 OTs on
19N -bit strings, and for the parameters of [28] we have to
perform n = 5120 OTs on 16N -bit strings. For our experi-
ments in Tab. 1 we choose the parameters of [28].

4.4 Eigenfaces
In the setting of face recognition using Eigenfaces [44],

the client holds a face image X = (x
1

, . . . , xK0) with `-
bit elements and the server holds an average face image
 = ( 

1

, . . . , K0), a set of Eigenfaces (U1, . . . , UK), with
U j = (uj

1

, . . . , uj
K0) for j = 1, . . . ,K, and a database of

N projected faces Y 1, . . . , Y N . The identification protocol
consists of three phases:

1. Projection: The average face image  is subtracted
from X. The result is projected on the Eigenfaces
basis. Thus, one gets X̄ = (x̄

1

, . . . , x̄K), with x̄j =
SP(X � , U j), for j = 1, . . . ,K.

2. Distance: The Euclidean distances dj = ED(X̄, Y i)
are computed, for i = 1, . . . , N .

3. Comparison: The distances di are compared to thresh-
olds and an identification result is output (see §3.2).

We suggest to use our GSHADE protocol to securely com-
pute the first two steps, in the following way:
Projection. The operation consists of a subtraction then

a scalar product and thus belongs to the family of functions
that can be computed using GSHADE. Since C uses the

same input for all K projections, one can use the 1-vs-K
variant described in §3.3. Thus, C gets T = X̄ +R = (x̄

1

+
r
1

, . . . , x̄K + rK) and S gets R = (r
1

, . . . , rK), where the ris

are random masks in Zp, where p = 22`+dlog2 K0e. Note that
here we compute this step as x̄j = SP(X,U j)� SP( , Uk),
i.e., �SP( , U j) is computed on the server’s side as part of
fY (with notations of §3.1).

Distance. Here C and S use the GSHADE protocol a
second time in the 1-vs-N variant, where the computed
function is (T ;R, Y ) 7! ED(T � R, Y ), which is included
in FGSHADE .

For the parameters used in [18,25,41,42], the projection is
computed onK0 = 10 304-dimensional vectors with ` = 8-bit
elements and yields a 30-bit result on a K = 12-dimension
plane. The Euclidean distance is then computed on K = 12-
dimensional vectors with 30-bit elements and results in a 50-
bit value. Thus, we have to perform 82 432 OTs on 360-bit
elements and 360 OTs on 50N -bit elements. Notice that the
cost of the projection phase is independent of the size of the
database N .

We emphasize that GSHADE can be applied to other
privacy-preserving biometric recognition protocols that fol-
low the same architecture as Eigenfaces, such as Fisher-
faces [4], where the di↵erence mostly lies in the algorithm
to choose the basis (in the case of Fisherfaces, Linear Dis-
criminant Analysis instead of Principal Component Analysis
for Eigenfaces) and thus does not impact the identification
protocol.

5. PERFORMANCE EVALUATION
In this section we evaluate the performance of GSHADE.

We discuss the use of quantized inputs in §5.1, asymptotic
complexities are studied in §5.2 and our experimental results
are described and compared to the state of the art in §5.3.

5.1 Quantization
Our GSHADE protocol relies on the fact that inputs are

binary vectors, either originally binary or by binarizing vec-
tors of integers. However, it is often the case that the coor-
dinates of feature vectors used for, e.g., face recognition are
real or floating point numbers. It must be validated that
the same protocols can be used on integer or binary inputs
without loss of accuracy. Erkin et al. [18] showed, from
experiments on the AT&T [2] database, that integers can
be used as inputs to the Eigenfaces protocol (by multiply-
ing original inputs by 1 000) without reliability losses and
parameters used in [18] are chosen accordingly.

The performance of GSHADE is directly related to the
size of the inputs, but also to the size of the outputs
(dlog

2

(m)e in Tab. 2). We ran experiments to show that
the outputs’ size could be further reduced without impact-
ing accuracy. Our biometric experiments have been con-

193



ducted on the AT&T [2] and Multi-PIE [11, 22] (restricted
to frontal images taken using camera 05 1) databases, using
the Python Face Recognition Library [23, 29]. We took 30
eigenfaces (instead of 12 for [18]) and showed that the size
of the projected faces could be reduced to 30 ⇥ 13 = 390-
bit vectors, which is comparable to the parameters of [18].
However, our analysis showed that squared Euclidean dis-
tances can be reduced to 26-bit (for the AT&T database) or
24-bit integers (for the Multi-PIE database), which is about
half the size used in [18, 25, 41, 42]. Using these parameters
would allow to further decrease the communication complex-
ity of GSHADE by about a factor of two without any loss
in correctness, accuracy, or security. However, aiming at
fairness in our comparison to other protocols, experiments
described in §5.3 were run with the same parameters as in
[18,25,41,42].

5.2 Asymptotic Performance Comparison
In the following we compare the asymptotic performance

of the GSHADE protocol when computing various distances
to related work. The parameters that a↵ect the performance
of GSHADE are the number of OTs and the length of strings
that are transferred obliviously. In the following,  is the
symmetric security parameter and ⇢ is the asymmetric se-
curity parameter (in our experiments in §5.3 we set  = 80
and ⇢ = 1024).

In Tab. 4, we summarize the asymptotic computation and
communication complexities when computing di↵erent dis-
tance metrics using GSHADE with those of secure distance
computation protocols in related work (§2.3). For each so-
lution, we outline the technique that is used, i.e., homo-
morphic encryption (HE), garbled circuits (GC), GMW, or
GSHADE, the computation complexity of S (which domi-
nates the one of C) and the overall communication. Note
that the complexities only include the distance computa-
tion excluding later computation steps such as minimum,
greater than, and so on. However, each of the solutions can
be extended by a generic secure computation protocol to ob-
tain the desired functionality. We obtain the computation
complexity for HE by counting the number of modular expo-
nentiations and for GC, GMW, and GSHADE by counting
the number of symmetric cryptographic operations. For GC
we determine the communication complexity as the size of
the garbled circuit (3 bits per non-linear gate using the
free XOR [33] and garbled row reduction [37] techniques)
plus the number of input keys of the server ( bits per S’s
input bit). We neglect the inputs of C as these do not de-
pend on the database sizeN . For GMW, the communication
complexity is two symmetric keys per non-linear gate (see
complexity analysis in [1,42]). The complexity of GSHADE
takes into account the C-OT technique of [1]: communi-
cation complexity for n ⇥ C�OT` is n ⇥ (` + ) bits and
computation complexity is 3n+2n`/o symmetric operations,
where o is the output size of the PRF (pseudo-random func-
tion) used by the C-OT (see [1]). The HE-based protocols
of [3, 5, 18, 25, 28, 38] to compute the Hamming distance,
scalar product, and Euclidean distance use Paillier’s addi-
tively homomorphic encryption [39], so ciphertexts have size
2⇢ bits. For GSHADE and HE we include in Tab. 4 some
communication that does not depend on N , but that might
be dominant when N is not too large (e.g., for a few dozens
or hundreds of entries).

Computation. For the Hamming distance and normal-
ized Hamming distance, where the HE, GC, and GMW
techniques have a computation complexity that is linear in
N`, GSHADE achieves a computation complexity linear in
(N` log

2

`)/o. Considering that the output size of the PRF o
is in the order of some hundred bits (e.g., 128, 192, or 256),
while log

2

` is much smaller (e.g., about 10 for SCiFI and
IrisCodes), the computation complexity of GSHADE is con-
siderably smaller than that of the previous techniques, es-
pecially compared to HE based solutions because of the cost
of asymmetric operations. For the scalar product and Eu-
clidean distance, GMW requires O(NK`2) symmetric cryp-
tographic operations while GSHADE requires O(NK`2/o)
and hence GSHADE has a smaller computation complex-
ity by around a factor of o. The HE-based schemes, on
the other hand, achieve a performance of NK asymmetric
cryptographic operations, compared to 4NK`2/o symmetric
cryptographic operations in GSHADE. However, asymmet-
ric cryptographic operations, i.e., modular exponentiations,
are usually several orders of magnitudes slower than sym-
metric cryptographic operations such as AES or SHA, espe-
cially when increasing the security parameter. We provide
concrete performance numbers in our experiments in §5.3.

Communication. For all distances, we can observe that
GSHADE requires transmitting some orders of magnitude
less data than the generic secure computation protocols (GC
or GMW). When comparing the communication complex-
ity of GSHADE to HE-based protocols, on the other hand,
the communication complexity of GSHADE depends highly
on the bit length `. For the Hamming distance and nor-
malized Hamming distance, the communication complex-
ity of GSHADE grows with O(N` log

2

`) while the com-
munication complexity of HE-based protocols grows with
2N⇢. In biometric identification protocols that use (nor-
malized) Hamming distance the bitlength is relatively large
(e.g., ` 2 {900, 2 048}) s.t. ` log

2

` > 2⇢ and the communi-
cation complexity of GSHADE is higher than that of HE-
based protocols. This is also the case for the scalar product
and Euclidean distance where the communication complex-
ity of GSHADE grows with 2NK`2 which is higher than the
2N⇢ of HE-based protocols. Still, in our experiments in §5.3
GSHADE requires less than three times more communica-
tion than HE-based protocols.

5.3 Experimental Performance Comparison
In the following, we experimentally compare the perfor-

mance of GSHADE to that of related work on the Eigenfaces
and IrisCodes applications.

Experimental Setup. For all schemes, we compare the
overall run-time and estimated communication complexity.
We measured the complexity for our GSHADE protocol and
compare it to the numbers reported in related work. We
do not claim that we provide a fair comparison, since the
results were measured on di↵erent machines and using dif-
ferent programming languages. Moreover, most implemen-
tations are not publicly available. We rather intend for the
experiments to support the asymptotic complexities summa-
rized in Tab. 4. However, we argue that the orders of mag-
nitude improvements that we obtain are too significant to
be explained by the use of di↵erent programming languages,
libraries, or hardware alone. Note that, other than some re-
lated works, we only give the overall complexities and do
not divide them into pre-computation and online phase. We
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Distance Metric Technique Computation of S Communication [bits]

HE [38] N` asym 2(N + `)⇢
Hamming GC [27] 4N` sym 4N`
Distance GMW [42] 4N` sym 2N`

GSHADE (§3) (2N` log
2

`)/o+ 3` sym `(N log
2

`+ )

Normalized
Hamming
Distance

HE [5] N` asym (2N + `)⇢
GC [10,35] 16N` sym 14N`

GSHADE (§3) (8N` log
2

`)/o+ 6` sym 2`(2N log
2

`+ )

Scalar Product /
Euclidean Distance

HE [3,5, 18,25,28] NK asym 2(N +K)⇢
GMW [42] 8NK`2 sym 4NK`2

GSHADE (§3) (2NK`(2`+ log
2

K))/o+ 3K` sym K`(2N`+N log
2

K + )

Table 4: Asymptotic complexities for di↵erent 1-vs-N distance metrics with bit length `, PRF output size o,
vector dimension K, symmetric security parameter , and asymmetric security parameter ⇢.

point out that, since the only cryptographic protocol that
we use is OT, we can pre-compute all required cryptographic
operations and thereby achieve a very e�cient online phase,
as demonstrated in [12,42]. We implemented our GSHADE
protocol using the correlated OT extension from the C++
OT library of [1]. For evaluating the comparison and mini-
mum circuits, we use the C++ GMW implementation of [12]
with optimizations of [42] and the random OT extension
protocol of [1]. We chose the GMW framework of [12] as
it is implemented in the same programming language and
is also extensively based on OT. However, as GSHADE is
independent of the generic secure computation protocol, we
could alternatively use Yao’s garbled circuits protocol, e.g.,
as implemented in [27]. For the WiFi experiments in Tab. 1
we limit the bandwidth between the PCs using the tc com-
mand. In order to allow comparison with previous works we
also use short-term security parameters, i.e., symmetric se-
curity parameter  = 80 and asymmetric security parameter
⇢ = 1024. We run our experiments on two 3.2 GHz Intel
i5-4570 CPUs with 8 GB RAM each running Ubuntu 12.04
that are connected via Gigabit LAN.

5.3.1 SCiFI
The SCiFI protocol for face-recognition was specifically

designed to be computed in a privacy-preserving fashion
and has been implemented using various secure computa-
tion protocols. While the seminal work of [38] introduced
the SCiFI algorithm and used homomorphic encryption to
perform face-recognition, [27] and [42] improved on its per-
formance by expressing the SCiFI functionality as binary
circuit and evaluate it using Yao’s garbled circuits protocol
and the GMW protocol, respectively. The original SHADE
protocol [9] improved on the performance of both when se-
curely computing the Hamming distance. In the following
we compare the performance of GSHADE, which in the case
of SCiFI is the same as the SHADE protocol. We depict our
results in Tab. 5.

From our results we can observe that the (G)SHADE pro-
tocol outperforms previous protocols both in communication
and computation. Additionally, compared to the GMW im-
plementation of [42], the performance of (G)SHADE scales
better with increasing database size, resulting in an increas-
ing runtime advantage of factor 4-5 and a communication
advantage of factor 14 for 50 000 elements.

5.3.2 IrisCodes
We perform the IrisCode experiments using the same pa-

rameters as [5], where the iris codes X,Y 1, . . . , Y N and
masks M,M 01, . . . ,M 0N are 2 048-bit long and S holds
thresholds t1, . . . tN . The protocol of [5] uses DGK [15] to
compute the numerator Aj = |M ^M 0i ^ (X � Y i)| and the
denominator Bi = |M ^ M 0i| of the normalized Hamming
distance and the product Bit

i and performs the comparison

Ai

?

< tiBi using garbled circuits. The protocol of [5] also
proposes to let the server rotate his codes Y i and masks M 0i

left and right by c di↵erent o↵sets (thus creating 2c rotated
vectors, in addition to the original Y i) and perform the com-
parison on each rotated value. If any of the distances with
a rotated version of Y i is below the threshold, the protocol
outputs a match for Y i, which can be done by evaluating
a circuit consisting of 2c OR-gates. For our experiments,
we set the number of rotations to c = 0, since performing
c rotations essentially adds the same performance overhead
for both, the protocol of [5] and GSHADE, as increasing the
database size N by factor 2c+ 1.

Performances of GSHADE applied to IrisCode identifica-
tion are depicted in Tab. 6. We observe that the performance
of GSHADE for biometric IrisCode identification is accept-
able overall, but as shown in Tab. 1 it is the slowest among all
biometric identification protocols we tested. This low per-
formance can be explained by the high amount of single-bit
operations that are required to process the data in the OTs.
While other applications process the data byte-wise or, in
the case of SCiFI, require only few bitwise operations, the
IrisCode application makes an extensive use of bitwise oper-
ations, thereby becoming far less e�cient than other appli-
cations. However, we stress that a more careful implemen-
tation of bit operations as well as pre-computing required
inputs would further decrease the runtime of GSHADE. In
particular, all the values fi(0, Y

j) and fi(1, Y
j) can be com-

puted once, when a data Y j is added to the database, and
stored with the database, instead of computing them online.

As shown in Tab. 6, the communication complexity of
GSHADE is around 3 times higher compared to the ho-
momorphic encryption based protocol of [5]. However, the
overall computation time is much lower for GSHADE than
for [5]: GSHADE is about 35 times faster for N = 320 and
12 times faster for N = 10 000. Note that this improvement
by more than one order of magnitude is significant and does
not result from using di↵erent hardware.
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N = 100 N = 320 N = 50,000

Protocol [38] [27] [42] Ours [27] [42] Ours [42] Ours
(Techniques) (HE) (GC) (GMW) (GSHADE (GC) (GMW) (GSHADE (GMW) (GSHADE

+GMW) +GMW) +GMW)

Programming Language Java Java C++ C++ Java C++ C++ C++ C++
Time in sec. 244 8.8 0.3 0.2 42.9 0.5 0.3 46.0 9.9

Communication in MB 7.3 2.6 1.7 0.2 8.3 5.7 0.5 886.5 63.4

Table 5: Performances of privacy-preserving SCiFI identification protocols.

N = 320 N = 10 000
Protocol [5] Ours [5] Ours

(Techniques) (HE+GC) (GSHADE+GMW) (HE+GC) (GSHADE+GMW)

Programming Language C C++ C C++
Time in sec. 17.6 0.5 212.6 17.2

Communication in MB 1.7 4.9 37.6 87.5

Table 6: Performances of privacy-preserving IrisCode identification protocols.

5.3.3 FingerCodes
For privacy-preserving FingerCode identification, we com-

pare GSHADE to [28], which uses Paillier encryption to
compute the Euclidean distance and garbled circuits to find
the minimum. The results of this comparison are depicted
in Tab. 7. Note that we excluded the backtracking step
of [28] in the evaluation, which can be added if necessary.

While our protocol only slightly improves the communica-
tion complexity, the runtime improvements are significant,
i.e., do not only result from choosing a di↵erent program-
ming language. Our protocol improves the runtime by factor
500 for N = 128 elements and by factor 700 for N = 1024
elements.

5.3.4 Eigenfaces
Secure computation of face recognition using Eigenfaces

has been initially proposed based on homomorphic encryp-
tion [18] and subsequently the runtime has been improved by
using a combination of homomorphic encryption and garbled
circuits [25, 41] and using the GMW protocol [42]. These
works use the same parameters summarized in Tab. 2 and we
give a performance comparison with our protocol in Tab. 8.

We observe that GSHADE achieves a very e�cient run-
time and achieves a speedup of factor 20 over the GMW-
based protocol of [42] and even factor 66 to 100 over the HE-
based protocols of [18,25]. Note that these runtime improve-
ments of orders of magnitude are significant and hence do
not only result from using di↵erent programming languages
and hardware. The communication complexity of GSHADE
is several times lower than that of the GMW-based solution
and even comparable to the HE-based protocols.

6. CONCLUSION
We described an e�cient protocol called GSHADE to se-

curely evaluate several distance metrics ((normalized) Ham-
ming distance, Euclidean distance, scalar product, Maha-
lanobis distance) and showed that it can be used for ef-
ficient privacy-preserving biometric identification of several
biometric traits (iris, face, fingerprint) and protocols (SCiFI,
Eigenfaces, Fisherfaces, FingerCodes, IrisCodes). GSHADE
is based on oblivious transfer and benefits from recently pro-
posed optimizations for oblivious transfer extensions. Our

performance analysis shows that, depending on the traits,
GSHADE can be used for privacy-preserving identification
against up to several thousand database items per second.

We believe that GSHADE can be used for several applica-
tions in signal processing, pattern recognition, or image pro-
cessing that require privacy. Finding further applications of
GSHADE is an interesting topic for future research.
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[25] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider,
and I. Wehrenberg. TASTY: Tool for Automating
Secure Two-partY computations. In Computer and
Communications Security (CCS), pages 451–462, 2010.

[26] Y. Huang, D. Evans, and J. Katz. Private set
intersection: Are garbled circuits better than custom
protocols? In Network and Distributed System Security
Symposium (NDSS). The Internet Society, 2012.

[27] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
In USENIX Security Symposium. USENIX
Association, 2011.

[28] Y. Huang, L. Malka, D. Evans, and J. Katz. E�cient
privacy-preserving biometric identification. In Network
and Distributed System Security Symposium (NDSS).
The Internet Society, 2011.

[29] Idiap Research Institute. Face recognition library.
https://pypi.python.org/pypi/facereclib.

[30] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.
Extending oblivious transfers e�ciently. In CRYPTO,
volume 2729 of LNCS, pages 145–161. Springer, 2003.

[31] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti.
FingerCode: A filterbank for fingerprint representation
and matching. In Computer Vision and Pattern
Recognition (CVPR), pages 187–193. IEEE, 1999.

[32] V. Kolesnikov and R. Kumaresan. Improved OT
extension for transferring short secrets. In CRYPTO,
volume 8043 of LNCS, pages 54–70. Springer, 2013.

[33] V. Kolesnikov and T. Schneider. Improved garbled
circuit: Free XOR gates and applications. In
International Colloquium on Automata, Languages
and Programming (ICALP), volume 5126 of LNCS,
pages 486–498. Springer, 2008.

[34] S. Z. Li and A. K. Jain, editors. Encyclopedia of
Biometrics. Springer, 2009.

[35] Y. Luo, S.-C. S. Cheung, T. Pignata, R. Lazzeretti,
and M. Barni. An e�cient protocol for private
iris-code matching by means of garbled circuits. In
International Conference on Image Processing (ICIP),
pages 2653–2656. IEEE, 2012.

[36] M. Naor and B. Pinkas. E�cient oblivious transfer
protocols. In Symposium On Discrete Algorithms
(SODA), pages 448–457. ACM/SIAM, 2001.

[37] M. Naor, B. Pinkas, and R. Sumner. Privacy
preserving auctions and mechanism design. In
Conference on Electronic Commerce (EC), pages
129–139. ACM, 1999.

[38] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich.
SCiFI - a system for secure face identification. In
IEEE Symposium on Security and Privacy (S&P),
pages 239–254. IEEE, 2010.

[39] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In
EUROCRYPT, volume 1592 of LNCS, pages 223–238.
Springer, 1999.

[40] M. O. Rabin. How to exchange secrets with oblivious
transfer, TR-81 edition, 1981. Aiken Computation
Lab, Harvard University.

[41] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg.
E�cient privacy-preserving face recognition. In
International Conference on Information Security and
Cryptology (ICISC), volume 5984 of LNCS, pages
229–244. Springer, 2009.

[42] T. Schneider and M. Zohner. GMW vs. Yao? E�cient
secure two-party computation with low depth circuits.
In Financial Cryptography (FC), volume 7859 of
LNCS, pages 275–292. Springer, 2013.

[43] S. F. Shahandashti, R. Safavi-Naini, and
P. Ogunbona. Private fingerprint matching. In
Australasian Conference on Information Security and
Privacy (ACISP), volume 7372 of LNCS, pages
426–433. Springer, 2012.

[44] M. Turk and A. Pentland. Eigenfaces for recognition.
Journal of Cognitive Neuroscience, 3(1):71–86, 1991.

[45] A. C.-C. Yao. How to generate and exchange secrets
(extended abstract). In Foundations of Computer
Science (FOCS), pages 162–167. IEEE, 1986.

APPENDIX
A. CORRELATED OBLIVIOUS TRANS-

FER
In [1], Asharov et al. introduce a protocol that implements

the correlated OT (C-OT) functionality. They describe it in
a version that is adapted to Yao’s protocol, i.e., where the
correlation function is an exclusive-OR. The generic version
of their protocol can be used with any correlation function
as long as the outputs lie in {0, 1}l (or Z

2

l), for some integer
l. However, if the outputs of C-OT are integers from Zm,
where m 2 N is not a power of 2, the protocol cannot be
applied directly. In particular, we need a hash function H :
{0, 1}⇤ ! Zm that can be modeled as a random oracle. The
protocol described in [1, Sec. 5.4] should then be modified
as follows:

• S sends yj = f
�j (H(qj)) � H(qj � s), for every j =

1, . . . , n.

• For every 1  j  n, R outputs H(tj) if rj = 0 or
yj +H(tj) if rj = 1.

However, it is not practical to deal with such hash functions
in actual implementations. Consequently, if the modulus
m can be adapted, it is preferable to use a larger modulus
m0 = 2dlog2(m)e and apply the protocol. This is the case for
the biometric recognition protocols dealt with by GSHADE,
since the modulus m is such that all distances lie in Zm

and taking a larger modulus m0 > m would not change
correctness, because all distances obviously also lie in Zm0 .
Also notice that taking a modulus equal to m0 = 2dlog2(m)e

does not degrade communication complexity and that the
choice of the modulus does not impact security.
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